MA 229/MA 235 - Lecture 16

IISc

Recap

Recap

- Defined smooth vector fields and gave examples.

Recap

- Defined smooth vector fields and gave examples.
- Defined the tangent bundle and proved that smooth vector fields are vector fields that are also smooth maps.

The need for vector bundles

- The tangent bundle TM is a special kind of a manifold.
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question:
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$),
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (We might need such a notion because
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (We might need such a notion because it might help us answer the question of
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (We might need such a notion because it might help us answer the question of when $M \subset \mathbb{R}^{N}$ is a regular level set.)
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (We might need such a notion because it might help us answer the question of when $M \subset \mathbb{R}^{N}$ is a regular level set.)
- More generally,
- The tangent bundle TM is a special kind of a manifold. It parametrises "a family of smoothly varying tangent spaces".
- Another natural question: Can we parametrise a family of smoothly varying duals of tangent spaces?
- If $M \subset \mathbb{R}^{N}$ is a submanifold (or even more generally, $M \subset N$), then a natural question is "Can we parametrise the family of vector spaces that are orthogonal to the tangent spaces"? (We might need such a notion because it might help us answer the question of when $M \subset \mathbb{R}^{N}$ is a regular level set.)
- More generally, what does it mean to have a family of smoothly varying vector spaces?

Local triviality

Local triviality

- A trivial family parametrised by M

Local triviality

- A trivial family parametrised by M is simply $M \times V$.

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by $T M$

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e.,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces.

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"?

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of $T M$,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$.

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of TM, the most natural topology on TM did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}\left(U_{\alpha}\right)$ and $U_{\alpha} \times \mathbb{R}^{n}$.

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}\left(U_{\alpha}\right)$ and $U_{\alpha} \times \mathbb{R}^{n}$.
- So whatever a "vector bundle" is,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of $T M$, the most natural topology on $T M$ did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}\left(U_{\alpha}\right)$ and $U_{\alpha} \times \mathbb{R}^{n}$.
- So whatever a "vector bundle" is, it better be a family of vector spaces

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of TM, the most natural topology on TM did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}\left(U_{\alpha}\right)$ and $U_{\alpha} \times \mathbb{R}^{n}$.
- So whatever a "vector bundle" is, it better be a family of vector spaces that is locally trivial, i.e.,

Local triviality

- A trivial family parametrised by M is simply $M \times V$. But even in the case of TM, the most natural topology on TM did not make it homeomorphic to $M \times \mathbb{R}^{n}$.
- The key point conveyed by TM is the notion of 'local triviality', i.e., it is something that in a neighbourhood secretly looks like/isomorphic to a trivial family of vector spaces. If there is no link between the vector spaces at all, then in what sense are they "smoothly varying"? Indeed in the case of TM, locally, we had smoothly varying bases for $T_{p} M$. Using this local smoothly varying basis, we could find a nice bijection between $\pi^{-1}\left(U_{\alpha}\right)$ and $U_{\alpha} \times \mathbb{R}^{n}$.
- So whatever a "vector bundle" is, it better be a family of vector spaces that is locally trivial, i.e., there must be local smoothly varying bases.

Vector bundles

Vector bundles

- Def:

Vector bundles

- Def: Let M be a smooth manifold (without boundary).

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M$,

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r,

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e.,

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism.

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (and continuous real/complex vector bundles over topological manifolds too).

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (and continuous real/complex vector bundles over topological manifolds too).
- The V_{p} 's are called "fibres".

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (and continuous real/complex vector bundles over topological manifolds too).
- The V_{p} 's are called "fibres". Set theoretically, $V=\cup_{p \in M} V_{p}$.

Vector bundles

- Def: Let M be a smooth manifold (without boundary). A smooth manifold V is said to be a smooth real vector bundle of rank r over M if there is a surjective smooth map $\pi: V \rightarrow M, \pi^{-1}(p)=V_{p}$ is a real vector space of dimension r, and local triviality holds, i.e., for every point $p \in M$, there is a neighbourhood U such that there is a smooth diffeomorphism $T: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that it commutes with the projection maps and $T: V_{q} \rightarrow \mathbb{R}^{r}$ is a linear isomorphism. Likewise, one can define a smooth complex vector bundle (and continuous real/complex vector bundles over topological manifolds too).
- The V_{p} 's are called "fibres". Set theoretically, $V=\cup_{p \in M} V_{p}$.
- The map T is called a local trivialisation.

Locally smoothly varying basis

Locally smoothly varying basis

- The part about local triviality

Locally smoothly varying basis

- The part about local triviality implies the following:

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis).

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds,

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition:

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M.

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section.

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that a local trivialisation gives a collection of smooth sections s_{i}

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that a local trivialisation gives a collection of smooth sections s_{i} such that $s_{i}(p)$ is a basis of V_{p}.

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that a local trivialisation gives a collection of smooth sections s_{i} such that $s_{i}(p)$ is a basis of V_{p}.
- Conversely, given such a collection of smooth sections,

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that a local trivialisation gives a collection of smooth sections s_{i} such that $s_{i}(p)$ is a basis of V_{p}.
- Conversely, given such a collection of smooth sections, the map $L: U \times \mathbb{R}^{r} \rightarrow V$ given by

Locally smoothly varying basis

- The part about local triviality implies the following: There is a smooth collection of functions $s_{1}, \ldots, s_{r}: U \rightarrow V$ such that $s_{i}(q) \in V_{q} \forall q \in U$ and $s_{1}(q), \ldots, s_{r}(q)$ forms a basis for V_{q} (there is a local smoothly varying basis). Indeed, if local triviality holds, simply take $s_{i}=T^{-1}\left(e_{i}\right)$.
- This motivates the following definition: Let V be a smooth vector bundle over a smooth manifold M. A smooth map $s: M \rightarrow V$ such that $s(p) \in V_{p}$, i.e., $\pi(s(p))=p$ is called a smooth section. Smooth vector fields are smooth sections of TM.
- What we said above is that a local trivialisation gives a collection of smooth sections s_{i} such that $s_{i}(p)$ is a basis of V_{p}.
- Conversely, given such a collection of smooth sections, the $\operatorname{map} L: U \times \mathbb{R}^{r} \rightarrow V$ given by $L(p, \vec{v})=v^{i} s_{i}(p)$ is a smooth $1-1$ map such that L^{-1} is a local trivialisation (HW).

Examples

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle:

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted)

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles)

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M=S^{1}$.

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M=S^{1}$. One can prove (using the intermediate value theorem)

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M=S^{1}$. One can prove (using the intermediate value theorem) that any smooth section of L over M must vanish somewhere.
- A trivial bundle $M \times \mathbb{R}^{r}$.
- $T M$ is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M=S^{1}$. One can prove (using the intermediate value theorem) that any smooth section of L over M must vanish somewhere.
- S^{2} cannot be a vector bundle

Examples

- A trivial bundle $M \times \mathbb{R}^{r}$.
- TM is a vector bundle of rank n over M.
- Möbius bundle: Consider $L=[0,1] \times \mathbb{R} /\{(0, v) \sim(1,-v)\}$ and $M=[0,1] /\{0 \sim 1\}$. Note that $f: M \rightarrow S^{1}$ given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$ is a homeomorphism. Defining it to be a diffeomorphism makes M into a smooth manifold diffeo to S^{1}. It turns out that (proof omitted) L can be made into a smooth vector bundle of rank-1 (such things are called line bundles) over $M=S^{1}$. One can prove (using the intermediate value theorem) that any smooth section of L over M must vanish somewhere.
- S^{2} cannot be a vector bundle over any manifold (why?)

Vector bundle morphisms

Vector bundle morphisms

- Def:

Vector bundle morphisms

- Def: Let V, W be vector bundles over M.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.
- Def:

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.
- Def: Let $S \subset V$ be a vector bundle such that

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.
- Def: Let $S \subset V$ be a vector bundle such that the inclusion map is an embedding and

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.
- Def: Let $S \subset V$ be a vector bundle such that the inclusion map is an embedding and a $1-1$ vector bundle map.

Vector bundle morphisms

- Def: Let V, W be vector bundles over M. A smooth map $T: V \rightarrow W$ is called a vector bundle map/morphism if T commutes with the projections, i.e., T takes V_{p} into W_{p} for all $p \in M$ and does so linearly. If T is $1-1$ and T^{-1} is also smooth, then T^{-1} is also a vector bundle morphism. Such a T is called an isomorphism between V and W.
- The Möbius bundle is not isomorphic to $S^{1} \times \mathbb{R}$. $T S^{2}$ is not isomorphic to $S^{2} \times \mathbb{R}^{2}$. On the other hand, $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$.
- There is always an isomorphism $I: V \rightarrow V$ given by $I(v)=v$.
- Def: Let $S \subset V$ be a vector bundle such that the inclusion map is an embedding and a $1-1$ vector bundle map. Then S is said to be a subbundle of V.

Dual bundle

Dual bundle

- Let V be a vector bundle over M.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$. By the same reasoning, V^{*} with such

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$. By the same reasoning, V^{*} with such a topology is Hausdorff and second-countable.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$. By the same reasoning, V^{*} with such a topology is Hausdorff and second-countable. Similar to TM,

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$. By the same reasoning, V^{*} with such a topology is Hausdorff and second-countable. Similar to $T M$, it has a countable collection of coordinate charts making it into a smooth manifold.

Dual bundle

- Let V be a vector bundle over M. Consider the set $V^{*}=\cup_{p} V_{p}^{*}$. We can make V^{*} into a smooth vector bundle over M as well (called the dual bundle of V).
- Indeed, cover M by means of coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$ such that V is trivial over U_{α}. Let $T_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ be a local trivialisation for V. Consider the sections $s_{i, \alpha}=T_{\alpha}^{-1}\left(e_{i}\right)$. Take the dual smoothly varying basis $\left(s_{\alpha}^{*}\right)^{i}$ defined as $\left(s_{\alpha}^{*}\right)^{i}(p)\left(s_{\alpha, j}(p)\right)=\delta_{j}^{i}$. Consider the map $L_{\alpha}: U \times \mathbb{R}^{r} \rightarrow V^{*}$ given by $L_{\alpha}(p, \vec{v})=v_{i}\left(s_{\alpha}^{*}\right)^{i}$. This map is a bijection. Define a topology on V^{*} by the same construction as for $T M$. By the same reasoning, V^{*} with such a topology is Hausdorff and second-countable. Similar to $T M$, it has a countable collection of coordinate charts making it into a smooth manifold. These charts are induced from L_{α} which actually make them local trivialisations.

Cotangent bundle

Cotangent bundle

- This construction applied to TM

Cotangent bundle

- This construction applied to TM produces a vector bundle $T^{*} M$

Cotangent bundle

- This construction applied to TM produces a vector bundle $T^{*} M$ known as the cotangent bundle.

Cotangent bundle

- This construction applied to TM produces a vector bundle $T^{*} M$ known as the cotangent bundle.
- The smooth sections of $T^{*} M$ are

Cotangent bundle

- This construction applied to TM produces a vector bundle $T^{*} M$ known as the cotangent bundle.
- The smooth sections of $T^{*} M$ are called 1-form fields.

