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Recap

Defined smooth vector fields and gave examples.

Defined the tangent bundle and proved that smooth vector
fields are vector fields that are also smooth maps.
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The need for vector bundles

The tangent bundle TM is a special kind of a manifold. It
parametrises “a family of smoothly varying tangent spaces”.

Another natural question: Can we parametrise a family of
smoothly varying duals of tangent spaces?

If M ⊂ RN is a submanifold (or even more generally, M ⊂ N),
then a natural question is “Can we parametrise the family of
vector spaces that are orthogonal to the tangent spaces”?
(We might need such a notion because it might help us
answer the question of when M ⊂ RN is a regular level set.)

More generally, what does it mean to have a family of
smoothly varying vector spaces?
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Local triviality

A trivial family parametrised by M is simply M × V . But even
in the case of TM, the most natural topology on TM did not
make it homeomorphic to M × Rn.

The key point conveyed by TM is the notion of ‘local
triviality’, i.e., it is something that in a neighbourhood
secretly looks like/isomorphic to a trivial family of vector
spaces. If there is no link between the vector spaces at all,
then in what sense are they “smoothly varying”? Indeed in
the case of TM, locally, we had smoothly varying bases for
TpM. Using this local smoothly varying basis, we could find a
nice bijection between π−1(Uα) and Uα × Rn.

So whatever a “vector bundle” is, it better be a family of
vector spaces that is locally trivial, i.e., there must be local
smoothly varying bases.
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Vector bundles

Def: Let M be a smooth manifold (without boundary). A
smooth manifold V is said to be a smooth real vector bundle
of rank r over M if there is a surjective smooth map
π : V → M, π−1(p) = Vp is a real vector space of dimension
r , and local triviality holds, i.e., for every point p ∈ M, there
is a neighbourhood U such that there is a smooth
diffeomorphism T : π−1(U)→ U × Rr such that it commutes
with the projection maps and T : Vq → Rr is a linear
isomorphism. Likewise, one can define a smooth complex
vector bundle (and continuous real/complex vector bundles
over topological manifolds too).

The Vp’s are called “fibres”. Set theoretically, V = ∪p∈MVp.

The map T is called a local trivialisation.
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Locally smoothly varying basis

The part about local triviality implies the following: There is a
smooth collection of functions s1, . . . , sr : U → V such that
si (q) ∈ Vq ∀ q ∈ U and s1(q), . . . , sr (q) forms a basis for Vq

(there is a local smoothly varying basis). Indeed, if local
triviality holds, simply take si = T−1(ei ).

This motivates the following definition: Let V be a smooth
vector bundle over a smooth manifold M. A smooth map
s : M → V such that s(p) ∈ Vp, i.e., π(s(p)) = p is called a
smooth section. Smooth vector fields are smooth sections of
TM.

What we said above is that a local trivialisation gives a
collection of smooth sections si such that si (p) is a basis of
Vp.

Conversely, given such a collection of smooth sections, the
map L : U × Rr → V given by L(p, ~v) = v i si (p) is a smooth
1− 1 map such that L−1 is a local trivialisation (HW).
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Examples

A trivial bundle M × Rr .

TM is a vector bundle of rank n over M.

Möbius bundle: Consider L = [0, 1]× R/{(0, v) ∼ (1,−v)}
and M = [0, 1]/{0 ∼ 1}. Note that f : M → S1 given by
f (t) = (cos(2πt), sin(2πt)) is a homeomorphism. Defining it
to be a diffeomorphism makes M into a smooth manifold
diffeo to S1. It turns out that (proof omitted) L can be made
into a smooth vector bundle of rank-1 (such things are called
line bundles) over M = S1. One can prove (using the
intermediate value theorem) that any smooth section of L
over M must vanish somewhere.

S2 cannot be a vector bundle over any manifold (why?)
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Vector bundle morphisms

Def: Let V ,W be vector bundles over M. A smooth map
T : V →W is called a vector bundle map/morphism if T
commutes with the projections, i.e., T takes Vp into Wp for
all p ∈ M and does so linearly. If T is 1− 1 and T−1 is also
smooth, then T−1 is also a vector bundle morphism. Such a
T is called an isomorphism between V and W .

The Möbius bundle is not isomorphic to S1 × R. TS2 is not
isomorphic to S2 × R2. On the other hand, TS1 is isomorphic
to S1 × R.

There is always an isomorphism I : V → V given by I (v) = v .

Def: Let S ⊂ V be a vector bundle such that the inclusion
map is an embedding and a 1− 1 vector bundle map. Then S
is said to be a subbundle of V .
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isomorphic to S2 × R2. On the other hand, TS1 is isomorphic
to S1 × R.

There is always

an isomorphism I : V → V given by I (v) = v .
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map is an embedding and a 1− 1 vector bundle map. Then S
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Dual bundle

Let V be a vector bundle over M. Consider the set
V ∗ = ∪pV ∗p . We can make V ∗ into a smooth vector bundle
over M as well (called the dual bundle of V ).

Indeed, cover M by means of coordinate charts (Uα, xα) such
that V is trivial over Uα. Let Tα : π−1(Uα)→ Uα × Rr be a
local trivialisation for V . Consider the sections
si ,α = T−1α (ei ). Take the dual smoothly varying basis (s∗α)i

defined as (s∗α)i (p)(sα,j(p)) = δij . Consider the map

Lα : U × Rr → V ∗ given by Lα(p, ~v) = vi (s
∗
α)i . This map is a

bijection. Define a topology on V ∗ by the same construction
as for TM. By the same reasoning, V ∗ with such a topology
is Hausdorff and second-countable. Similar to TM, it has a
countable collection of coordinate charts making it into a
smooth manifold. These charts are induced from Lα which
actually make them local trivialisations.
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Cotangent bundle

This construction applied to TM produces a vector bundle
T ∗M known as the cotangent bundle.

The smooth sections of T ∗M are called 1-form fields.
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