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Integration of functions vs forms

Recall that it makes no sense to try to define the integral of a
function f : M → R on a manifold because when we change
coordinates, the integral does not remain invariant.

On the other hand, in Rn we can define the integrals of top
forms. So we could try

∫
M ω =

∑
i

∫
Rn ρi fdx

1dx2 . . .. The
only problem is that the sign of the Jacobian plays a role in
the change of variables formula.

What if we could cover M by coordinate charts such that the
Jacobians are all positive? In this case, we have some hope.

“Def” (Warning: This definition is useful when dim(M) > 1
or ∂M = φ.): Suppose M is a smooth manifold (with or
without boundary) and (xα,Uα) is a smooth atlas consisting

of connected charts such that det(∂x
i
α

∂x jβ
) > 0 on Uα ∩Uβ for all

α, β, then we say that M is equipped with an oriented atlas/
M has a given orientation. (If such an atlas exists, then we
say that M is orientable.)
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Orientation

When do we say that two such atlases give the “same”
orientation?

Def: Two smooth oriented atlases A and B are said to be
compatible orientation-wise/define the same orientation if
A ∪ B is an oriented atlas.

Suppose M is orientable. Then orientation-compatibility is an
equivalence relation among oriented atlases (why?)

To determine the number of equivalence classes, we need a
more concise interpretation of orientation.
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Orientation through top forms

Given an oriented manifold (M, (xα,Uα)), let ρα be a
partition-of-unity subordinate to the atlas. Define
ω =

∑
α ραdx

1
α ∧ dx2α . . .. Note that ω 6= 0 anywhere (why?)

Moreover, ω is a positive multiple of dx1α ∧ dx2α . . . for all α.

Conversely, suppose M either does not have a boundary or
dim(M) > 1. Also suppose ω is a nowhere vanishing top form,
and suppose A is any atlas consisting of connected charts.
We can change the charts and produce a new atlas to make
sure that ω( ∂

∂x1α
, ∂
∂x2α

, . . .) > 0 for all α (how?)

So a manifold (such that dim(M) > 1 or ∂M = φ) is
orientable iff it admits a nowhere vanishing top form. We say
that a chart is compatible with an orientation form ω if
ω( ∂

∂x1
, . . .) > 0 at all points.
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Orientation through top forms

In fact, define an equivalence relation between nowhere
vanishing top forms: ω ∼ ω′ if ω = f ω′ where f > 0. Then if
M is connected we have exactly two equivalence classes
(why?)

The above correspondence gives a bijection between the two
sets of equivalence classes when M has no boundary or when
dim(M) > 1, i.e., Given [(xα,Uα)] consider [

∑
α ραdx

1
α ∧ . . .].

Firstly, this map is well-defined. Secondly, it is onto (why?)

Thirdly, it is 1− 1: If
∑

α ραdx
1
α∧...∑

α′ ρ′αdy
1
α′∧...

> 0, and if these two

atlases are not compatible then det( ∂x
i
α

∂y j

β′
) < 0 for some α, β′

throughout Uα ∩Uβ′ (why?). This means that the above ratio
must be negative in this region (why?) Thus we have a
contradiction.
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The case when dim(M) = 1 and ∂M 6= φ

The above correspondence means that we have exactly two
equivalence classes for orientation when ∂M = φ or
dim(M) > 1. Often, one arbitrarily designates one class as
“positively oriented” and the other as negatively oriented.

Unfortunately, in this case since we have defined the boundary
chart to have positive last coordinate, our definition of
orientation is not a nice one. To avoid this problem, one
defines orientation of manifolds using the existence of nowhere
vanishing top forms. Then every orientable manifold (with or
without boundary) has exactly two orientation classes. When
∂M = φ or dim(M) > 1, this corresponds to orienting using
coordinate charts.
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Examples of orientable manifolds

Rn is orientable.

A codimension-0 submanifold D ⊂ M is orientable if M is so:
Suppose ω is an orientation form on M, then i∗ω is one on D.

If M,N are orientable, then so is M × N with the “product
orientation”: Take π∗1ω1 ∧ π∗2ω2 as the orientation form.

Suppose F : M → N (where M,N are connected with
dim > 0) is a smooth map such that F∗ is invertible at all
points. If (F∗)p is orientation-preserving at all points, then F
is said to be orientation-preserving. Otherwise it is said to be
orientation-reversing. Given an orientation [ω] on N, there is a
unique orientation (called the pullback orientation) such that
F is orientation-preserving: [F ∗ω] does the job (why?). If [η]
is any other such orientation, then
ω(F∗e1,F∗e2, . . .)/η(e1, . . .) > 0 (why?). Thus [η] = [F ∗ω].
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Examples of orientable manifolds

Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth
manifold with or without boundary, and S ⊂ M is a smooth
hypersurface (without boundary that does not intersect ∂M).
Suppose ~N is a section of TM restricted to S such that ~N is
nowhere tangent to S . Then S is orientable with the
orientation given by the form (e1, . . . , en−1)→ ω( ~N, e1, . . .)
(Indeed, ~N, e1 . . . are linearly independent and hence
ω( ~N, . . .) 6= 0.) For instance, Sn can be oriented this way.
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