MA 229/MA 235 - Lecture 26

IISc

Recap

æ

(日)

• Orientation through top forms and charts.

▶ ∢ ≣

æ

- Orientation through top forms and charts.
- Examples (including hypersurfaces).

э

Examples of orientable manifolds

• Induced orientation on ∂M :

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1).

• Induced orientation on ∂M : Proposition: Let M be an oriented smooth *n*-fold with boundary $(n \ge 1)$. Then ∂M is orientable, and

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is orientable, and all "outward pointing" vector fields (

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of TM-restricted-to-∂M

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of TM-restricted-to-∂M such that X = c_n ∂xⁿ/₊... where c_n < 0

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of TM-restricted-to-∂M such that X = c_n ∂xⁿ/+ ... where c_n < 0 whenever (x¹,...) is a boundary chart) along ∂M

Induced orientation on ∂M: Proposition: Let M be an oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of TM-restricted-to-∂M such that X = c_n ∂xⁿ/+ ... where c_n < 0 whenever (x¹,...) is a boundary chart) along ∂M determine the same orientation.

æ

- ₹ 🖬 🕨

• Firstly,

æ

▶ ★ 문 ▶ ★ 문

• Firstly, ∂M is a smooth hypersurface:

• Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M.

• Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates

• Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly,

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M :

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{n}}$.

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly,

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward},...)$.

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly,

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields,

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \dots,) = c_n \omega(\frac{\partial}{\partial x^n}, \dots)$ which is a

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \dots,) = c_n \omega(\frac{\partial}{\partial x^n}, \dots)$ which is a positive multiple of $\omega(X_2, \dots)$ (why?)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \dots,) = c_n \omega(\frac{\partial}{\partial x^n}, \dots)$ which is a positive multiple of $\omega(X_2, \dots)$ (why?)
- As an example,

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \ldots,) = c_n \omega(\frac{\partial}{\partial x^n}, \ldots)$ which is a positive multiple of $\omega(X_2, \ldots)$ (why?)
- As an example, the orientation on \mathbb{H}^n is

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \ldots,) = c_n \omega(\frac{\partial}{\partial x^n}, \ldots)$ which is a positive multiple of $\omega(X_2, \ldots)$ (why?)
- As an example, the orientation on ℍⁿ is the same orientation as that of ℝⁿ⁻¹ only when

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first n-1 coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X = \sum_{\alpha} -\rho_{\alpha} \frac{\partial}{\partial x^{\alpha}}$.
- Thirdly, use the induced orientation $\omega(X_{outward}, \ldots)$.
- Fourthly, suppose X_1, X_2 are two such outward fields, then $\omega(X_1, \frac{\partial}{\partial x^1}, \ldots,) = c_n \omega(\frac{\partial}{\partial x^n}, \ldots)$ which is a positive multiple of $\omega(X_2, \ldots)$ (why?)
- As an example, the orientation on ℍⁿ is the same orientation as that of ℝⁿ⁻¹ only when n is even (why?).

<□ > < Ξ

æ

• It turns out that \mathbb{RP}^n is orientable iff

æ

→ < ∃ →</p>

э

• It turns out that \mathbb{RP}^n is orientable iff *n* is odd.

æ

▶ ∢ ≣

э

• It turns out that \mathbb{RP}^n is orientable iff *n* is odd. For instance, \mathbb{RP}^2 is not orientable.

æ

- It turns out that \mathbb{RP}^n is orientable iff *n* is odd. For instance, \mathbb{RP}^2 is not orientable.
- The Möbius line bundle

э

- It turns out that \mathbb{RP}^n is orientable iff *n* is odd. For instance, \mathbb{RP}^2 is not orientable.
- The Möbius line bundle is not orientable.

• Proposition:

Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and

æ

 Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map

Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E.

Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē,

• Proposition: Suppose D, E are domains of integration in \mathbb{R}^n or \mathbb{H}^n and $G: \overline{D} \to \overline{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \overline{E} , then $\int_D G^* \omega = \int_E \omega$ if G is orientation-preserving

Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.

Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G*ω = ∫_E ω if G is orientation-preserving and - ∫_E ω if G otherwise.

Proof:

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^n or \mathbb{H}^n and $G: \overline{D} \to \overline{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \overline{E} , then $\int_D G^* \omega = \int_E \omega$ if G is orientation-preserving and $-\int_F \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition:

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact.

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact. Then there is a domain K ⊂ D ⊂ U.

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact. Then there is a domain K ⊂ D ⊂ U.
- Proof:

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact. Then there is a domain K ⊂ D ⊂ U.
- Proof: Cover K with finitely many balls

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact. Then there is a domain K ⊂ D ⊂ U.
- Proof: Cover K with finitely many balls lying in U.

- Proposition: Suppose D, E are domains of integration in ℝⁿ or ℍⁿ and G : D̄ → Ē is a smooth map that is a diffeo from D to E. If ω is a smooth top form on Ē, then ∫_D G^{*}ω = ∫_E ω if G is orientation-preserving and − ∫_F ω if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and K ⊂ U is compact. Then there is a domain K ⊂ D ⊂ U.
- Proof: Cover K with finitely many balls lying in U. The union of these balls does the job (why?)

• Proposition:

• Proposition: Suppose U, V are open subsets in \mathbb{R}^n or \mathbb{H}^n and

Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo.

Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo. If ω is a smooth top form with compact support in U,

• Proposition: Suppose U, V are open subsets in \mathbb{R}^n or \mathbb{H}^n and $G: U \to V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_V G^* \omega = \int_U \omega$ if G is orientation-preserving

• Proposition: Suppose U, V are open subsets in \mathbb{R}^n or \mathbb{H}^n and $G: U \to V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_V G^* \omega = \int_U \omega$ if G is orientation-preserving and $-\int_U \omega$ if G otherwise.

- Proposition: Suppose U, V are open subsets in \mathbb{R}^n or \mathbb{H}^n and $G: U \to V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_V G^* \omega = \int_U \omega$ if G is orientation-preserving and $-\int_U \omega$ if G otherwise.
- Proof:

- Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo. If ω is a smooth top form with compact support in U, then ∫_V G^{*}ω = ∫_Uω if G is orientation-preserving and − ∫_Uω if G otherwise.
- Proof: Let $E \subset \overline{E} \subset U$ be a domain of integration

- Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo. If ω is a smooth top form with compact support in U, then ∫_V G^{*}ω = ∫_Uω if G is orientation-preserving and − ∫_Uω if G otherwise.
- Proof: Let E ⊂ Ē ⊂ U be a domain of integration containing the support of ω.

- Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo. If ω is a smooth top form with compact support in U, then ∫_V G^{*}ω = ∫_Uω if G is orientation-preserving and − ∫_Uω if G otherwise.
- Proof: Let E ⊂ Ē ⊂ U be a domain of integration containing the support of ω. Now G⁻¹(E) is a domain of integration too (why?)

- Proposition: Suppose U, V are open subsets in ℝⁿ or ℍⁿ and G: U → V is a diffeo. If ω is a smooth top form with compact support in U, then ∫_V G^{*}ω = ∫_Uω if G is orientation-preserving and − ∫_Uω if G otherwise.
- Proof: Let E ⊂ Ē ⊂ U be a domain of integration containing the support of ω. Now G⁻¹(E) is a domain of integration too (why?) Hence we are done (why?)

Integration on manifolds

æ

Integration on manifolds

• Let ω be a top form on an oriented manifold M

Integration on manifolds

• Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ) .

• Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ) . Then $\int_M \omega := \pm \int_{\phi(U)} (\phi^{-1})^* \omega$ depending on

• Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ) . Then $\int_M \omega := \pm \int_{\phi(U)} (\phi^{-1})^* \omega$ depending on whether ϕ is orientation-preserving (

 Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U])

 Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)*ω depending on whether φ is
 orientation-preserving ([φ*(dx¹ ∧ ...)] = [ω|_U]) or reversing.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition:

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)*ω depending on whether φ is
 orientation-preserving ([φ*(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)*ω depending on whether φ is
 orientation-preserving ([φ*(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)*ω depending on whether φ is
 orientation-preserving ([φ*(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof:

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)*ω depending on whether φ is
 orientation-preserving ([φ*(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .

• Proof: Suppose
$$(V, \psi)$$
 is another chart. Then

$$\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega.$$
 Now
 $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def:

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary).

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary). Let ω be a compactly supported top form.

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of supp(ω) (

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of supp(ω) (the charts need not have positive orientation).

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of supp(ω) (the charts need not have positive orientation). Let ρ_i be a partition-of-unity subordinate to U_i.

• • = • • = •

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let *M* be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of supp(ω) (the charts need not have positive orientation). Let ρ_i be a partition-of-unity subordinate to U_i. Then ∫_M ω := ∑_i ∫ ρ_iω. (

• • = • • = •

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then
 ∫_{φ(U)}(φ⁻¹)*ω = ∫_{φ(U∩V)}(φ⁻¹)*ω. Now
 ψ ∘ φ⁻¹ : φ(U ∩ V) → ψ(U ∩ V) is a diffeo. From the above
 results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of $supp(\omega)$ (the charts need not have positive orientation). Let ρ_i be a partition-of-unity subordinate to U_i . Then $\int_M \omega := \sum_i \int \rho_i \omega$. (We allow for negatively oriented charts too

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, φ). Then
 ∫_M ω := ± ∫_{φ(U)}(φ⁻¹)^{*}ω depending on whether φ is
 orientation-preserving ([φ^{*}(dx¹ ∧ ...)] = [ω|_U]) or reversing.
- Proposition: This definition is independent of (U, ϕ) .
- Proof: Suppose (V, ψ) is another chart. Then $\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\phi(U \cap V)} (\phi^{-1})^* \omega$. Now $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_i be a finite coordinate open cover of $supp(\omega)$ (the charts need not have positive orientation). Let ρ_i be a partition-of-unity subordinate to U_i . Then $\int_M \omega := \sum_i \int \rho_i \omega$. (We allow for negatively oriented charts too to care of the 1-dimensional case.)

æ

• Proposition:

æ

• Proposition: The above definition is independent

• Proposition: The above definition is independent of the choice of the partition-of-unity.

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof:

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_i is another open cover,

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity.

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ_j' is another partition-of-unity. Then

$$\sum_{i} \int \rho_{i} \omega = \sum_{i} \int \sum_{j} \rho_{i} \rho'_{j} \omega = \sum_{i} \pm \int_{\phi_{i}(U_{i})} \sum_{j} (\phi_{i}^{-1})^{*} (\rho_{i} \rho'_{j} \omega)$$

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then $\sum_i \int \rho_i \omega = \sum_i \int \sum_j \rho_i \rho'_j \omega = \sum_i \pm \int_{\phi_i(U_i)} \sum_j (\phi_i^{-1})^* (\rho_i \rho'_j \omega)$ which by linearity of the integral is

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then $\sum_i \int \rho_i \omega = \sum_i \int \sum_j \rho_i \rho'_j \omega = \sum_i \pm \int_{\phi_i(U_i)} \sum_j (\phi_i^{-1})^* (\rho_i \rho'_j \omega)$ which by linearity of the integral is $\sum_i \sum_j \pm \int_{\phi_i(U_i)} (\phi_j^{-1})^* (\rho_i \rho'_j \omega) =$ $\sum_i \sum_j \pm \int_{\psi_j(V_j)} (\psi_j^{-1})^* (\rho_i \rho'_j \omega) = \sum_j \int_M \rho'_j \omega.$

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then $\sum_i \int \rho_i \omega = \sum_i \int \sum_j \rho_i \rho'_j \omega = \sum_i \pm \int_{\phi_i(U_i)} \sum_j (\phi_i^{-1})^* (\rho_i \rho'_j \omega)$ which by linearity of the integral is $\sum_i \sum_j \pm \int_{\phi_i(U_i)} (\phi_j^{-1})^* (\rho_i \rho'_j \omega) =$ $\sum_i \sum_j \pm \int_{\psi_j(V_j)} (\psi_j^{-1})^* (\rho_i \rho'_j \omega) = \sum_j \int_M \rho'_j \omega.$
- For 0-dimensional oriented manifolds, i.e.,

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points,

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫ ψ_j(V_j)(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω) which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.

 For 0-dimensional oriented manifolds, i.e., a discrete collection
- of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω) which by linearity of the integral is
 ∑_i ∑_j ± ∫<sub>φ_i(U_i)(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫<sub>ψ_j(V_j)(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫<sub>ψ_j(V_j)(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.

 For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f</sub></sub></sub>
 - is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold,

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫ ψ_j(V_j)(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
 A for a compactly supported function for a compactly supported function for a compact by supported function.
 A for a compact by supported function for a compact by supported function for a compact by supported function.
 A for a compact by supported function for a compact by supported function for a compact by supported function.
 A for a compact by supported function for a compact by supported function.
 A for a compact by supported function for a compact by supported function.
 A for a compact by supported function for a compact by supported function.
 A for a compact by supported for
- of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an n-1 form,

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_i(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an n-1 form, then $\int_S \omega$ is understood to be

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω) which by linearity of the integral is

 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_i(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If S ⊂ M is a submanifold, and ω is an n − 1 form, then ∫_S ω is understood to be with respect to the induced orientation (

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If S ⊂ M is a submanifold, and ω is an n − 1 form, then ∫_S ω is understood to be with respect to the induced orientation (if an N is chosen).

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be ∑±f(p) where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an n-1 form, then $\int_S \omega$ is understood to be with respect to the induced orientation (if an \vec{N} is chosen). Likewise for $\int_{\partial M} \omega$ (

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_j is another open cover, and ρ'_j is another partition-of-unity. Then
 ∑_i ∫ ρ_iω = ∑_i ∫ ∑_j ρ_iρ'_jω = ∑_i ± ∫_{φ_i(U_i)} ∑_j(φ_i⁻¹)*(ρ_iρ'_jω)
 which by linearity of the integral is
 ∑_i ∑_j ± ∫_{φ_i(U_i)}(φ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_i ∑_j ± ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(ρ_iρ'_jω) =
 ∑_j ∫_{ψ_j(V_j)}(ψ_j⁻¹)*(∑_i ρ_iρ'_jω) = ∑_j ∫_M ρ'_jω.
 For 0-dimensional oriented manifolds, i.e., a discrete collection
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be ∑±f(p) where the signs are decided by the orientation.
- If S ⊂ M is a submanifold, and ω is an n − 1 form, then ∫_S ω is understood to be with respect to the induced orientation (if an N is chosen). Likewise for ∫_{∂M} ω (with the outward normal).

Properties (can be proven directly)

[▶ ★ 문 ▶ ★ 문

• Linearity.

(日) * * き * * き *

- Linearity.
- Orientation reversal.

▶ ▲ 문 ▶ ▲ 문 ▶

э

- Linearity.
- Orientation reversal.
- Positivity.

★ E ► < E ►</p>

э

- Linearity.
- Orientation reversal.
- Positivity.
- Diffeomorphism invariance (upto orientation).

Practically speaking...

• Suppose $D \subset \mathbb{R}^2$ is the unit disc (with orientation $dx \wedge dy$)

• Suppose $D \subset \mathbb{R}^2$ is the unit disc (with orientation $dx \wedge dy$) and $\omega = x^2 dx \wedge dy$ is a smooth 2-form on \overline{D} .

Suppose D ⊂ ℝ² is the unit disc (with orientation dx ∧ dy)and ω = x²dx ∧ dy is a smooth 2-form on D̄. Then how can we calculate ∫_{D̄} ω?

- Suppose $D \subset \mathbb{R}^2$ is the unit disc (with orientation $dx \wedge dy$) and $\omega = x^2 dx \wedge dy$ is a smooth 2-form on \overline{D} . Then how can we calculate $\int_{\overline{D}} \omega$?
- The problem is that

- Suppose $D \subset \mathbb{R}^2$ is the unit disc (with orientation $dx \wedge dy$) and $\omega = x^2 dx \wedge dy$ is a smooth 2-form on \overline{D} . Then how can we calculate $\int_{\overline{D}} \omega$?
- The problem is that we have to use a partition-of-unity

- Suppose D ⊂ ℝ² is the unit disc (with orientation dx ∧ dy)and ω = x²dx ∧ dy is a smooth 2-form on D̄. Then how can we calculate ∫_{D̄} ω?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!

- Suppose D ⊂ ℝ² is the unit disc (with orientation dx ∧ dy)and ω = x²dx ∧ dy is a smooth 2-form on D̄. Then how can we calculate ∫_{D̄} ω?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!
- If we were to do it naively,

- Suppose D ⊂ ℝ² is the unit disc (with orientation dx ∧ dy)and ω = x²dx ∧ dy is a smooth 2-form on D̄. Then how can we calculate ∫_{D̄} ω?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!
- If we were to do it naively, we would have simply done $\int_{x^2+y^2\leq 1} x^2 dx dy = \int_0^{2\pi} \int_0^1 r^2 \cos^2(\theta) r dr d\theta.$