MA 229/MA 235 - Lecture 26

IISc

Recap

Recap

- Orientation through top forms and charts.

Recap

- Orientation through top forms and charts.
- Examples (including hypersurfaces).

Examples of orientable manifolds

Examples of orientable manifolds

- Induced orientation on ∂M :

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$.

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and all "outward pointing" vector fields (

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of $T M$-restricted-to- ∂M

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of $T M$-restricted-to- ∂M such that $X=c_{n} \frac{\partial x^{n}}{+} \ldots$ where $c_{n}<0$

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of $T M$-restricted-to- ∂M such that $X=c_{n} \frac{\partial x^{n}}{+} \ldots$ where $c_{n}<0$ whenever $\left(x^{1}, \ldots\right)$ is a boundary chart) along ∂M

Examples of orientable manifolds

- Induced orientation on ∂M : Proposition: Let M be an oriented smooth n-fold with boundary $(n \geq 1)$. Then ∂M is orientable, and all "outward pointing" vector fields (Smooth sections X of $T M$-restricted-to- ∂M such that $X=c_{n} \frac{\partial x^{n}}{+} \ldots$ where $c_{n}<0$ whenever $\left(x^{1}, \ldots\right)$ is a boundary chart) along ∂M determine the same orientation.

Induced orientation on ∂M (Proof)

Induced orientation on ∂M (Proof)

- Firstly,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface:

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M.

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M :

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a positive multiple of $\omega\left(X_{2}, \ldots\right)$ (why?)

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a positive multiple of $\omega\left(X_{2}, \ldots\right)$ (why?)
- As an example,

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a positive multiple of $\omega\left(X_{2}, \ldots\right)$ (why?)
- As an example, the orientation on \mathbb{H}^{n} is

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a positive multiple of $\omega\left(X_{2}, \ldots\right)$ (why?)
- As an example, the orientation on \mathbb{H}^{n} is the same orientation as that of \mathbb{R}^{n-1} only when

Induced orientation on ∂M (Proof)

- Firstly, ∂M is a smooth hypersurface: Cover it with boundary charts for M. Now the first $n-1$ coordinates provide charts for ∂M (why?)
- Secondly, there is a smooth outward pointing vector field on ∂M : Take a partition-of-unity and define $X=\sum_{\alpha}-\rho_{\alpha} \frac{\partial}{\partial x_{\alpha}^{n}}$.
- Thirdly, use the induced orientation $\omega\left(X_{\text {outward }}, \ldots\right)$.
- Fourthly, suppose X_{1}, X_{2} are two such outward fields, then $\omega\left(X_{1}, \frac{\partial}{\partial x^{1}}, \ldots,\right)=c_{n} \omega\left(\frac{\partial}{\partial x^{n}}, \ldots\right)$ which is a positive multiple of $\omega\left(X_{2}, \ldots\right)$ (why?)
- As an example, the orientation on \mathbb{H}^{n} is the same orientation as that of \mathbb{R}^{n-1} only when n is even (why?).

Non-examples

Non-examples

- It turns out that $\mathbb{R P}^{n}$ is orientable iff

Non-examples

- It turns out that $\mathbb{R P}^{n}$ is orientable iff n is odd.

Non-examples

- It turns out that $\mathbb{R P}^{n}$ is orientable iff n is odd. For instance, $\mathbb{R} \mathbb{P}^{2}$ is not orientable.

Non-examples

- It turns out that $\mathbb{R P}^{n}$ is orientable iff n is odd. For instance, $\mathbb{R P}^{2}$ is not orientable.
- The Möbius line bundle

Non-examples

- It turns out that $\mathbb{R P}^{n}$ is orientable iff n is odd. For instance, $\mathbb{R} \mathbb{P}^{2}$ is not orientable.
- The Möbius line bundle is not orientable.

Orientation and integration of top forms

Orientation and integration of top forms

- Proposition:

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E.

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E},

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof:

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition:

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact.

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact. Then there is a domain $K \subset D \subset U$.

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact. Then there is a domain $K \subset D \subset U$.
- Proof:

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact. Then there is a domain $K \subset D \subset U$.
- Proof: Cover K with finitely many balls

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact. Then there is a domain $K \subset D \subset U$.
- Proof: Cover K with finitely many balls lying in U.

Orientation and integration of top forms

- Proposition: Suppose D, E are domains of integration in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: \bar{D} \rightarrow \bar{E}$ is a smooth map that is a diffeo from D to E. If ω is a smooth top form on \bar{E}, then $\int_{D} G^{*} \omega=\int_{E} \omega$ if G is orientation-preserving and $-\int_{E} \omega$ if G otherwise.
- Proof: Follows from the change of variables formula (how?)
- What if D or E do not have zero-measure boundaries?
- Proposition: Suppose U is an open subset and $K \subset U$ is compact. Then there is a domain $K \subset D \subset U$.
- Proof: Cover K with finitely many balls lying in U. The union of these balls does the job (why?)

Orientation and integration of top forms

Orientation and integration of top forms

- Proposition:

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo.

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U,

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.
- Proof:

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.
- Proof: Let $E \subset \bar{E} \subset U$ be a domain of integration

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.
- Proof: Let $E \subset \bar{E} \subset U$ be a domain of integrationcontaining the support of ω.

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.
- Proof: Let $E \subset \bar{E} \subset U$ be a domain of integrationcontaining the support of ω. Now $G^{-1}(E)$ is a domain of integration too (why?)

Orientation and integration of top forms

- Proposition: Suppose U, V are open subsets in \mathbb{R}^{n} or \mathbb{H}^{n} and $G: U \rightarrow V$ is a diffeo. If ω is a smooth top form with compact support in U, then $\int_{V} G^{*} \omega=\int_{U} \omega$ if G is orientation-preserving and $-\int_{U} \omega$ if G otherwise.
- Proof: Let $E \subset \bar{E} \subset U$ be a domain of integrationcontaining the support of ω. Now $G^{-1}(E)$ is a domain of integration too (why?) Hence we are done (why?)

Integration on manifolds

Integration on manifolds

- Let ω be a top form on an oriented manifold M

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ).

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving (

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{u}\right]\right)$ or reversing.
- Proposition:

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof:

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid \cup]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid \cup]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now
$\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def:

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary).

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid \cup]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)($

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)$ (the charts need not have positive orientation).

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)$ (the charts need not have positive orientation). Let ρ_{i} be a partition-of-unity subordinate to U_{i}.

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)$ (the charts need not have positive orientation). Let ρ_{i} be a partition-of-unity subordinate to U_{i}. Then $\int_{M} \omega:=\sum_{i} \int \rho_{i} \omega$. (

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=\left[\left.\omega\right|_{U}\right]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)$ (the charts need not have positive orientation). Let ρ_{i} be a partition-of-unity subordinate to U_{i}. Then $\int_{M} \omega:=\sum_{i} \int \rho_{i} \omega$. (We allow for negatively oriented charts too

Integration on manifolds

- Let ω be a top form on an oriented manifold M that is compactly supported in a chart (U, ϕ). Then $\int_{M} \omega:= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega$ depending on whether ϕ is orientation-preserving $\left(\left[\phi^{*}\left(d x^{1} \wedge \ldots\right)\right]=[\omega \mid u]\right)$ or reversing.
- Proposition: This definition is independent of (U, ϕ).
- Proof: Suppose (V, ψ) is another chart. Then
$\int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega=\int_{\phi(U \cap V)}\left(\phi^{-1}\right)^{*} \omega$. Now $\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)$ is a diffeo. From the above results we are done.
- Def: Let M be an oriented manifold (with or without boundary). Let ω be a compactly supported top form. Let U_{i} be a finite coordinate open cover of $\operatorname{supp}(\omega)$ (the charts need not have positive orientation). Let ρ_{i} be a partition-of-unity subordinate to U_{i}. Then $\int_{M} \omega:=\sum_{i} \int \rho_{i} \omega$. (We allow for negatively oriented charts too to care of the 1-dimensional case.)

Integration on manifolds

Integration on manifolds

- Proposition:

Integration on manifolds

- Proposition: The above definition is independent

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof:

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover,

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity.

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

$$
\begin{aligned}
& \sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega .
\end{aligned}
$$

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

$$
\begin{aligned}
& \sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega .
\end{aligned}
$$

- For 0-dimensional oriented manifolds, i.e.,

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

$$
\begin{aligned}
& \sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{j} \int_{\psi_{j}}\left(V_{j}\right)\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega .
\end{aligned}
$$

- For 0-dimensional oriented manifolds, i.e., a discrete collection of points,

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

$$
\begin{aligned}
& \sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega .
\end{aligned}
$$

- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is

$$
\begin{aligned}
& \sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)= \\
& \sum_{j} \int_{\psi_{j}}\left(V_{j}\right)\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega .
\end{aligned}
$$

- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold,

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{j}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form,

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form, then $\int_{S} \omega$ is understood to be

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form, then $\int_{S} \omega$ is understood to be with respect to the induced orientation (

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form, then $\int_{S} \omega$ is understood to be with respect to the induced orientation (if an \vec{N} is chosen).

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form, then $\int_{S} \omega$ is understood to be with respect to the induced orientation (if an \vec{N} is chosen). Likewise for $\int_{\partial M} \omega$ (

Integration on manifolds

- Proposition: The above definition is independent of the choice of the partition-of-unity.
- Proof: Suppose V_{j} is another open cover, and ρ_{j}^{\prime} is another partition-of-unity. Then
$\sum_{i} \int \rho_{i} \omega=\sum_{i} \int \sum_{j} \rho_{i} \rho_{\dot{\prime}}^{\prime} \omega=\sum_{i} \pm \int_{\phi_{i}\left(U_{i}\right)} \sum_{j}\left(\phi_{i}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)$ which by linearity of the integral is
$\sum_{i} \sum_{j} \pm \int_{\phi_{i}\left(U_{i}\right)}\left(\phi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{i} \sum_{j} \pm \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\rho_{i} \rho_{j}^{\prime} \omega\right)=$
$\sum_{j} \int_{\psi_{j}\left(V_{j}\right)}\left(\psi_{j}^{-1}\right)^{*}\left(\sum_{i} \rho_{i} \rho_{j}^{\prime} \omega\right)=\sum_{j} \int_{M} \rho_{j}^{\prime} \omega$.
- For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the "integral" of a compactly supported function f is defined to be $\sum \pm f(p)$ where the signs are decided by the orientation.
- If $S \subset M$ is a submanifold, and ω is an $n-1$ form, then $\int_{S} \omega$ is understood to be with respect to the induced orientation (if an \vec{N} is chosen). Likewise for $\int_{\partial M} \omega$ (with the outward normal).

Properties (can be proven directly)

Properties (can be proven directly)

- Linearity.

Properties (can be proven directly)

- Linearity.
- Orientation reversal.

Properties (can be proven directly)

- Linearity.
- Orientation reversal.
- Positivity.

Properties (can be proven directly)

- Linearity.
- Orientation reversal.
- Positivity.
- Diffeomorphism invariance (upto orientation).

Practically speaking...

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y)$

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}.

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?
- The problem is that

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?
- The problem is that we have to use a partition-of-unity

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$) and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!
- If we were to do it naively,

Practically speaking...

- Suppose $D \subset \mathbb{R}^{2}$ is the unit disc (with orientation $d x \wedge d y$)and $\omega=x^{2} d x \wedge d y$ is a smooth 2-form on \bar{D}. Then how can we calculate $\int_{\bar{D}} \omega$?
- The problem is that we have to use a partition-of-unity and such things are practically impossible to integrate explicitly!
- If we were to do it naively, we would have simply done $\int_{x^{2}+y^{2} \leq 1} x^{2} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cos ^{2}(\theta) r d r d \theta$.

