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Recap

Orientation through top forms and charts.

Examples (including hypersurfaces).
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Examples of orientable manifolds

Induced orientation on ∂M: Proposition: Let M be an
oriented smooth n-fold with boundary (n ≥ 1). Then ∂M is
orientable, and all “outward pointing” vector fields (Smooth
sections X of TM-restricted-to-∂M such that X = cn

∂xn

+ . . .

where cn < 0 whenever (x1, . . .) is a boundary chart) along
∂M determine the same orientation.
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Induced orientation on ∂M (Proof)

Firstly, ∂M is a smooth hypersurface: Cover it with boundary
charts for M. Now the first n − 1 coordinates provide charts
for ∂M (why?)

Secondly, there is a smooth outward pointing vector field on
∂M: Take a partition-of-unity and define X =

∑
α−ρα

∂
∂xnα

.

Thirdly, use the induced orientation ω(Xoutward , . . .).

Fourthly, suppose X1,X2 are two such outward fields, then
ω(X1,

∂
∂x1 , . . . , ) = cnω( ∂

∂xn , . . .) which is a positive multiple
of ω(X2, . . .) (why?)

As an example, the orientation on Hn is the same orientation
as that of Rn−1 only when n is even (why?).
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Non-examples

It turns out that RPn is orientable iff n is odd. For instance,
RP2 is not orientable.

The Möbius line bundle is not orientable.
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The Möbius line bundle

is not orientable.

Orientation and integration 5/11



Non-examples

It turns out that RPn is orientable iff n is odd. For instance,
RP2 is not orientable.
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Orientation and integration of top forms

Proposition: Suppose D,E are domains of integration in Rn

or Hn and G : D̄ → Ē is a smooth map that is a diffeo from
D to E . If ω is a smooth top form on Ē , then

∫
D G ∗ω =

∫
E ω

if G is orientation-preserving and −
∫
E ω if G otherwise.

Proof: Follows from the change of variables formula
(how?)

What if D or E do not have zero-measure boundaries?

Proposition: Suppose U is an open subset and K ⊂ U is
compact. Then there is a domain K ⊂ D ⊂ U.

Proof: Cover K with finitely many balls lying in U. The union
of these balls does the job (why?)
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that is a diffeo from
D to E . If ω is a smooth top form on Ē , then
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or Hn and G : D̄ → Ē is a smooth map that is a diffeo from
D to E . If ω is a smooth top form on Ē , then
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Proof: Let E ⊂ Ē ⊂ U be a domain of integrationcontaining
the support of ω. Now G−1(E ) is a domain of integration too
(why?) Hence we are done (why?)

Orientation and integration 7/11



Integration on manifolds

Let ω be a top form on an oriented manifold M that is
compactly supported in a chart (U, φ). Then∫
M ω := ±

∫
φ(U)(φ−1)∗ω depending on whether φ is

orientation-preserving ([φ∗(dx1 ∧ . . .)] = [ω|U ]) or reversing.

Proposition: This definition is independent of (U, φ).

Proof: Suppose (V , ψ) is another chart. Then∫
φ(U)(φ−1)∗ω =

∫
φ(U∩V )(φ−1)∗ω. Now

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeo. From the above
results we are done.

Def: Let M be an oriented manifold (with or without
boundary). Let ω be a compactly supported top form. Let Ui

be a finite coordinate open cover of supp(ω) (the charts need
not have positive orientation). Let ρi be a partition-of-unity
subordinate to Ui . Then

∫
M ω :=

∑
i

∫
ρiω. (We allow for

negatively oriented charts too to care of the 1-dimensional
case.)
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Integration on manifolds

Proposition: The above definition is independent of the choice
of the partition-of-unity.
Proof: Suppose Vj is another open cover, and ρ′j is another
partition-of-unity. Then∑

i

∫
ρiω =

∑
i

∫ ∑
j ρiρ

′
jω =

∑
i ±

∫
φi (Ui )

∑
j(φ
−1
i )∗(ρiρ

′
jω)

which by linearity of the integral is∑
i

∑
j ±

∫
φi (Ui )

(φ−1
j )∗(ρiρ

′
jω) =∑

i

∑
j ±

∫
ψj (Vj )

(ψ−1
j )∗(ρiρ

′
jω) =∑

j

∫
ψj (Vj )

(ψ−1
j )∗(

∑
i ρiρ

′
jω) =

∑
j

∫
M ρ′jω.

For 0-dimensional oriented manifolds, i.e., a discrete collection
of points, the “integral” of a compactly supported function f
is defined to be

∑
±f (p) where the signs are decided by the

orientation.
If S ⊂ M is a submanifold, and ω is an n − 1 form, then

∫
S ω

is understood to be with respect to the induced orientation (if
an ~N is chosen). Likewise for

∫
∂M ω (with the outward

normal).
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Properties (can be proven directly)

Linearity.

Orientation reversal.

Positivity.

Diffeomorphism invariance (upto orientation).
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Practically speaking...

Suppose D ⊂ R2 is the unit disc (with orientation
dx ∧ dy)and ω = x2dx ∧ dy is a smooth 2-form on D̄. Then
how can we calculate

∫
D̄ ω?

The problem is that we have to use a partition-of-unity and
such things are practically impossible to integrate explicitly!

If we were to do it naively, we would have simply done∫
x2+y2≤1 x

2dxdy =
∫ 2π

0

∫ 1
0 r2 cos2(θ)rdrdθ.
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