MA 229/MA 235 - Lecture 11

IISc

Tangent spaces

1/11

æ

Recap

æ

• Tangent spaces on manifolds. Pushforwards.

- Tangent spaces on manifolds. Pushforwards.
- Dimension of tangent spaces.

- Tangent spaces on manifolds. Pushforwards.
- Dimension of tangent spaces.
- Coordinate bases and pushforwards in terms of coordinates.

Tangent spaces

3/11

æ

• Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$.

Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM.

Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = ṽ^j ∂/∂x̃^j.

Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = v^j ∂/∂x^j. How are the vⁱ and v^j related?

Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = ṽ^j ∂/∂x̃^j. How are the vⁱ and ṽ^j related?
Note that ṽ^j = v(x̃^j) = vⁱ ∂X̃^j/∂xⁱ.

- Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = v^j ∂/∂x^j. How are the vⁱ and v^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example:

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y).

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$?

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.

- Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = ṽ^j ∂/∂x̃^j. How are the vⁱ and ṽ^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.
- Example (Caution!):

- Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = ṽ^j ∂/∂x̃^j. How are the vⁱ and ṽ^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.
- Example (Caution!):Let $\tilde{x} = x$, $\tilde{y} = y + x^3$. Let p = (1, 0) in (x, y) coordinates.

- Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M. Suppose v ∈ T_pM. So (abusing notation) v = vⁱ ∂/∂xⁱ and v = ṽ^j ∂/∂x̃^j. How are the vⁱ and ṽ^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.
- Example (Caution!):Let $\tilde{x} = x$, $\tilde{y} = y + x^3$. Let p = (1, 0) in (x, y) coordinates. Is $\frac{\partial}{\partial x}|_p = \frac{\partial}{\partial \tilde{x}}|_p$?

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.
- Example (Caution!):Let $\tilde{x} = x$, $\tilde{y} = y + x^3$. Let p = (1,0) in (x, y) coordinates. Is $\frac{\partial}{\partial x}|_p = \frac{\partial}{\partial \tilde{x}}|_p$? $\frac{\partial}{\partial x} = \frac{\partial \tilde{x}}{\partial x}\frac{\partial}{\partial \tilde{x}} + \frac{\partial \tilde{y}}{\partial x}\frac{\partial}{\partial \tilde{y}}$ which at p is

- Suppose (U, x), (V, \tilde{x}) are two coordinate charts around $p \in M$. Suppose $v \in T_p M$. So (abusing notation) $v = v^i \frac{\partial}{\partial x^i}$ and $v = \tilde{v}^j \frac{\partial}{\partial \tilde{x}^j}$. How are the v^i and \tilde{v}^j related?
- Note that $\tilde{v^j} = v(\tilde{x}^j) = v^i \frac{\partial \tilde{x}^j}{\partial x^i}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r} + 2\frac{\partial}{\partial \theta}$ in terms of $\hat{i} = \frac{\partial}{\partial x}$ and $\hat{j} = \frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r}\hat{i} + \frac{\partial y}{\partial r}\hat{j} + 2\frac{\partial x}{\partial \theta}\hat{i} + 2\frac{\partial y}{\partial \theta}\hat{j}$.
- Example (Caution!):Let $\tilde{x} = x$, $\tilde{y} = y + x^3$. Let p = (1, 0) in (x, y) coordinates. Is $\frac{\partial}{\partial x}|_p = \frac{\partial}{\partial \tilde{x}}|_p$? $\frac{\partial}{\partial x} = \frac{\partial \tilde{x}}{\partial x}\frac{\partial}{\partial \tilde{x}} + \frac{\partial \tilde{y}}{\partial x}\frac{\partial}{\partial \tilde{y}}$ which at p is $\frac{\partial}{\partial \tilde{x}} + 3\frac{\partial}{\partial \tilde{y}}$.

Example: Tangent space of S^n

Tangent spaces

4/11

(*) * 문 * * 문 *

æ

• Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth.

< ∃ →

э

• Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates:

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} .

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance,

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance, on U_+ , $i(z^1 = \frac{x^1}{1-x^{n+1}}, \dots, z^n = \frac{x^n}{1-x^{n+1}}) = (x^1 = \frac{2z^i}{1+\sum_j(z^j)^2}, x^2, \dots, x^{n+1} = \frac{\sum_j(z^j)^2 1}{\sum_j(z^j)^2 + 1})$. In these coordinates,

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance, on U_+ , $i(z^1 = \frac{x^1}{1-x^{n+1}}, \dots, z^n = \frac{x^n}{1-x^{n+1}}) = (x^1 = \frac{2z^i}{1+\sum_j(z^j)^2}, x^2, \dots, x^{n+1} = \frac{\sum_j(z^j)^2 1}{\sum_j(z^j)^2 + 1})$. In these coordinates, $i_* \frac{\partial}{\partial z^i} = \frac{\partial x^j}{\partial z^i} \frac{\partial}{\partial x^j}$.

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance, on U_+ , $i(z^1 = \frac{x^1}{1-x^{n+1}}, \dots, z^n = \frac{x^n}{1-x^{n+1}}) = (x^1 = \frac{2z^i}{1+\sum_j(z^j)^2}, x^2, \dots, x^{n+1} = \frac{\sum_j(z^j)^{2-1}}{\sum_j(z^j)^{2+1}})$. In these coordinates, $i_* \frac{\partial}{\partial z^i} = \frac{\partial x^j}{\partial z^i} \frac{\partial}{\partial x^j}$. It can be easily seen that

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance, on U_+ , $i(z^1 = \frac{x^1}{1-x^{n+1}}, \ldots, z^n = \frac{x^n}{1-x^{n+1}}) = (x^1 = \frac{2z^i}{1+\sum_j (z^j)^2}, x^2, \ldots, x^{n+1} = \frac{\sum_j (z^j)^{2-1}}{\sum_j (z^j)^{2+1}})$. In these coordinates, $i_* \frac{\partial}{\partial z^i} = \frac{\partial x^j}{\partial z^i} \frac{\partial}{\partial x^j}$. It can be easily seen that i_* is 1-1 and that

- Recall that $i: S^n \to \mathbb{R}^{n+1}$ is smooth. Thus $i_*: T_p S^n \to T_p R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts U_{\pm} . For instance, on U_+ , $i(z^1 = \frac{x^1}{1-x^{n+1}}, \ldots, z^n = \frac{x^n}{1-x^{n+1}}) = (x^1 = \frac{2z^i}{1+\sum_j(z^j)^2}, x^2, \ldots, x^{n+1} = \frac{\sum_j(z^j)^{2-1}}{\sum_j(z^j)^{2+1}})$. In these coordinates, $i_* \frac{\partial}{\partial z^i} = \frac{\partial x^j}{\partial z^i} \frac{\partial}{\partial x^j}$. It can be easily seen that i_* is 1-1 and that its image is precisely the usual tangent plane at p.

Tangent spaces

5/11

• Let *M* be a manifold (with or without boundary)

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e.,

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- ullet Define a relation \sim on this disjoint union as

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?)

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\sim}M$.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be T_pM. It is a vector space (how?)

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be T_pM. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map,

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial v^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be T_pM. It is a vector space (how?)
- Suppose $F: M \to N$ is a smooth map, define $\tilde{F}_*([v]) = [DFv]$.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be T_pM. It is a vector space (how?)
- Suppose $F: M \to N$ is a smooth map, define $\tilde{F}_*([v]) = [DFv]$.
- Consider the (choice-free/canonical) map $F: T_pM \to T_pM$ given by

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{\rho}M$. It is a vector space (how?)
- Suppose $F: M \to N$ is a smooth map, define $\tilde{F}_*([v]) = [DFv]$.
- Consider the (choice-free/canonical) map $F : T_p M \to T_p M$ given by $v \to [v^i]$.

- Let *M* be a manifold (with or without boundary)
- Consider the set S of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union of \mathbb{R}^n over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be T_pM. It is a vector space (how?)
- Suppose $F: M \to N$ is a smooth map, define $\tilde{F}_*([v]) = [DFv]$.
- Consider the (choice-free/canonical) map F : T_pM → T_p[~]M given by v → [vⁱ]. This map is a linear isomorphism that commutes with pushforwards (HW)

Tangent spaces

6/11

æ

• Given an interval $J \subset \mathbb{R}$ and a

 Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M,

 Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M

Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (

Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is

Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path.

Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning:

Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the $T_t J = \mathbb{R}$ for every $t \in J$.

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)
- It acts on smooth functions as

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma'(t_0)(f) = (f \circ \gamma)'(t_0)$.

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma'(t_0)(f) = (f \circ \gamma)'(t_0)$.
- Suppose (U, x^i) is a coordinate chart around p,

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma'(t_0)(f) = (f \circ \gamma)'(t_0)$.
- Suppose (U, x^i) is a coordinate chart around p, $\gamma'(t_0) = \frac{d\gamma^i}{dt}(t_0)\frac{\partial}{\partial x^i}$, i.e.,

- Given an interval J ⊂ ℝ and a smooth manifold (with or without boundary) M, a smooth path passing through p ∈ M is a smooth function γ : J → M such that γ(t₀) = p for some t₀ ∈ J. (Typically, a curve is the *image* of a path. Warning: Lee calls paths as curves.)
- Note that the T_tJ = ℝ for every t ∈ J. The velocity of a smooth path at t₀ is γ'(t₀) = (γ_{*})_{t₀}(d/dt) ∈ T_pM. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma'(t_0)(f) = (f \circ \gamma)'(t_0)$.
- Suppose (U, x^i) is a coordinate chart around p, $\gamma'(t_0) = \frac{d\gamma^i}{dt}(t_0)\frac{\partial}{\partial x^i}$, i.e., $\gamma'(t_0)(f) = \frac{\partial f}{\partial x^i}(p)\frac{d\gamma^i}{dt}(t_0)$.

Tangent spaces

7/11

æ

• Proposition:

æ

• Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof:

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v = v^i \frac{\partial}{\partial x^i}$.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,...,vⁿ) (abusing notation). Also

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,...,vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,...,vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,...,vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial):

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let $F: M \to N$ be a smooth map

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let $F : M \to N$ be a smooth map and $\gamma : J \to M$ be a smooth path.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is F_{*}(γ'(t₀)).

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is F_{*}(γ'(t₀)).
- Computing the differential:

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is F_{*}(γ'(t₀)).
- Computing the differential: Suppose F : M → N is smooth and v ∈ T_pM.

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is F_{*}(γ'(t₀)).
- Computing the differential: Suppose $F : M \to N$ is smooth and $v \in T_p M$. Then $F_* v = (F \circ \gamma)'(0)$ where

- Proposition: Every $v \in T_pM$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now v = vⁱ ∂/∂xⁱ. Choose the smooth path γ(t) = t(v¹,..., vⁿ) (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly γ'(0) = v.
- Composition (trivial): Let F : M → N be a smooth map and γ : J → M be a smooth path. Then the velocity of F ∘ γ at t₀ is F_{*}(γ'(t₀)).
- Computing the differential: Suppose $F : M \to N$ is smooth and $v \in T_p M$. Then $F_* v = (F \circ \gamma)'(0)$ where $\gamma(0) = p, \gamma'(0) = v$.

Tangent spaces

8/11

æ

• Basically, all tangent vectors

• Basically, all tangent vectors are velocity vectors of smooth paths.

• Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around

• Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation ~ between smooth paths γ : J → M where 0 ∈ J and γ(0) = p:

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation ~ between smooth paths γ : J → M where 0 ∈ J and γ(0) = p: γ₁ ~ γ₂ if (f ∘ γ₁)'(0) = (f ∘ γ₂)'(0) for any real-valued smooth function defined on a neighbourhood of p.

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes.

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map,

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$.

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If
 F: M → N is a smooth map, then F_{*}[γ] = [F ∘ γ]. The
 velocity of a smooth path γ is simply [γ].

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy.

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is:

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map T : V_pM → T_pM as [γ] → γ'(0). (

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_p M \to T_p M$ as $[\gamma] \to \gamma'(0)$. (Why is this well-defined?)

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_p M$ is defined to be the set of equivalence classes. If $F: M \to N$ is a smooth map, then $F_*[\gamma] = [F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_p M \to T_p M$ as $[\gamma] \to \gamma'(0)$. (Why is this well-defined?) This map is a bijection (why?)

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If
 F: M → N is a smooth map, then F_{*}[γ] = [F ∘ γ]. The
 velocity of a smooth path γ is simply [γ].
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_p M \to T_p M$ as $[\gamma] \to \gamma'(0)$. (Why is this well-defined?) This map is a bijection (why?) Thus this canonical map can be used

(4月) (日) (日) 日

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If
 F: M → N is a smooth map, then F_{*}[γ] = [F ∘ γ]. The
 velocity of a smooth path γ is simply [γ].
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_p M \to T_p M$ as $[\gamma] \to \gamma'(0)$. (Why is this well-defined?) This map is a bijection (why?) Thus this canonical map can be used to define the vector space structure such that

(4月) (3日) (3日) 日

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma : J \rightarrow M$ where $0 \in J$ and $\gamma(0) = p$: $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- V_pM is defined to be the set of equivalence classes. If
 F: M → N is a smooth map, then F_{*}[γ] = [F ∘ γ]. The
 velocity of a smooth path γ is simply [γ].
- Defining a vector space structure isn't easy. The simplest way
 is: Consider the map T : V_pM → T_pM as [γ] → γ'(0). (Why
 is this well-defined?) This map is a bijection (why?) Thus this
 canonical map can be used to define the vector space
 structure such that it is a linear isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Tangent spaces

9/11

æ

• Recall that if $f : \mathbb{R}^n \to \mathbb{R}^k$ (k < n) is a smooth map

 Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective

• Recall that if $f : \mathbb{R}^n \to \mathbb{R}^k$ (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0,

• Recall that if $f : \mathbb{R}^n \to \mathbb{R}^k$ (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3).

Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?

- Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of

- Recall that if f: ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$ (m > n), i.e., Df is 1 - 1?

- Recall that if f: ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere?

- Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1-1 in addition to Df being 1-1 everywhere!
 (

- Recall that if f: ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1 - 1 in addition to Df being 1 - 1 everywhere! (f : (-π, π) → ℝ² given by f(t) = (sin(2t), sin(t))).

- Recall that if f: ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1 - 1 in addition to Df being 1 - 1 everywhere! (f : (-π, π) → ℝ² given by f(t) = (sin(2t), sin(t))).
- So if f : M → N (manifolds without boundary) is a smooth map (n < m), q ∈ N,

- Recall that if f: ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1 - 1 in addition to Df being 1 - 1 everywhere! (f : (-π, π) → ℝ² given by f(t) = (sin(2t), sin(t))).
- So if f : M → N (manifolds without boundary) is a smooth map (n < m), q ∈ N, such that f_{*} : T_pM → T_{f(p)=q}N is surjective whenever f(p) = q,

- Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1 - 1 in addition to Df being 1 - 1 everywhere! (f : (-π, π) → ℝ² given by f(t) = (sin(2t), sin(t))).
- So if f : M → N (manifolds without boundary) is a smooth map (n < m), q ∈ N, such that f_{*} : T_pM → T_{f(p)=q}N is surjective whenever f(p) = q, then can f⁻¹(q) be made into a smooth manifold?

- Recall that if f : ℝⁿ → ℝ^k (k < n) is a smooth map such that Df_a has full rank=k, that is, it is surjective whenever f(a) = 0, then f⁻¹(0) "can be made into" a smooth manifold (HW 3). By the way, why k < n?
- What about the image of a smooth map f : ℝⁿ → ℝ^m (m > n), i.e., Df is 1 - 1? Even one where Df has full rank everywhere? One can find a counterexample where f is also 1 - 1 in addition to Df being 1 - 1 everywhere! (f : (-π, π) → ℝ² given by f(t) = (sin(2t), sin(t))).
- So if $f: M \to N$ (manifolds without boundary) is a smooth map (n < m), $q \in N$, such that $f_*: T_pM \to T_{f(p)=q}N$ is surjective whenever f(p) = q, then can $f^{-1}(q)$ be made into a smooth manifold? Likewise, what about the other case?

Tangent spaces

10/1

æ

• Definitions:

돈 돈 돈

• Definitions: Let M, N be smooth manifolds (with or without boundary) and $F : M \to N$ be a smooth map.

 Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be

• Definitions: Let M, N be smooth manifolds (with or without boundary) and $F : M \to N$ be a smooth map. The rank of F at p is defined to be the rank of $(F_*)_p : T_pM \to T_{F(p)}N$ (which is

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts).

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point,

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank.

• Definitions: Let M, N be smooth manifolds (with or without boundary) and $F : M \to N$ be a smooth map. The rank of Fat p is defined to be the rank of $(F_*)_p : T_pM \to T_{F(p)}N$ (which is the same as the rank of $[DF]_p$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $(F_*)_p$ has full rank, then F is said to have full rank at p.

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M,

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion.

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M,

Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition:

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If $(F_*)_p$ is surjective, then

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion.

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.
- Proof:

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates,

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function [DF] has full rank at p iff

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function [*DF*] has full rank at *p* iff a minor is non-zero.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and F : M → N be a smooth map. The rank of F at p is defined to be the rank of (F_{*})_p : T_pM → T_{F(p)}N (which is the same as the rank of [DF]_p in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If (F_{*})_p has full rank, then F is said to have full rank at p. If (F_{*})_p is surjective for all p ∈ M, then F is called a submersion. It is 1 − 1 for all p ∈ M, then F is said to be an immersion.
- Proposition: If (F_{*})_p is surjective, then p has a neighbourhood U such that F : U → N is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function [DF] has full rank at p iff a minor is non-zero. That minor will continue to be non-zero in a neighbourhood.

Tangent spaces

11/11

æ

•
$$f: \mathbb{R} \to \mathbb{R}$$
 given by $f(x) = x^2$ is

11/11

æ

• $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is *not* of constant rank.

11/11

f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.

f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.

•
$$f : \mathbb{R}^3 \to \mathbb{R}$$
 given by $f(x, y, z) = x$ is

f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.

•
$$f : \mathbb{R}^3 \to \mathbb{R}$$
 given by $f(x, y, z) = x$ is a submersion.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by f(x, y) = (x, y, 0) is

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by f(x, y) = (x, y, 0) is an immersion.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^2 into $\mathbb{R}^3.$

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^2 into $\mathbb{R}^3.$
- A 1 1 immersion

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^2 into $\mathbb{R}^3.$
- A 1-1 immersion need *not*

- f: ℝ → ℝ given by f(x) = x² is not of constant rank. It is an immersion (and a submersion) at x = 1 for instance.
- f: ℝ³ → ℝ given by f(x, y, z) = x is a submersion. Likewise for projections from products of manifolds.
- f: ℝ² → ℝ³ given by f(x, y) = (x, y, 0) is an immersion.
 Likewise for inclusions into products of manifolds.
- Let $\gamma: J \to M$ be a smooth map. Then γ is an immersion iff $\gamma'(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^2 into $\mathbb{R}^3.$
- A 1 1 immersion need *not* be a homeomorphism to its image.