MA 229/MA 235 - Lecture 11

IISc

Recap

Recap

- Tangent spaces on manifolds. Pushforwards.

Recap

- Tangent spaces on manifolds. Pushforwards.
- Dimension of tangent spaces.
- Tangent spaces on manifolds. Pushforwards.
- Dimension of tangent spaces.
- Coordinate bases and pushforwards in terms of coordinates.

Change of coordinates

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{\chi}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{\chi}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{\chi}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example:

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y).

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{\chi}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{\chi}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$?

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.
- Example (Caution!):

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.
- Example (Caution!):Let $\tilde{x}=x, \tilde{y}=y+x^{3}$. Let $p=(1,0)$ in (x, y) coordinates.

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.
- Example (Caution!):Let $\tilde{x}=x, \tilde{y}=y+x^{3}$. Let $p=(1,0)$ in (x, y) coordinates. Is $\left.\frac{\partial}{\partial x}\right|_{p}=\left.\frac{\partial}{\partial \tilde{x}}\right|_{p}$?

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.
- Example (Caution!):Let $\tilde{x}=x, \tilde{y}=y+x^{3}$. Let $p=(1,0)$ in (x, y) coordinates. Is $\left.\frac{\partial}{\partial x}\right|_{p}=\left.\frac{\partial}{\partial \tilde{x}}\right|_{p} ? \frac{\partial}{\partial x}=\frac{\partial \tilde{x}}{\partial x} \frac{\partial}{\partial \tilde{x}}+\frac{\partial \tilde{y}}{\partial x} \frac{\partial}{\partial \tilde{y}}$ which at p is

Change of coordinates

- Suppose $(U, x),(V, \tilde{x})$ are two coordinate charts around $p \in M$. Suppose $v \in T_{p} M$. So (abusing notation) $v=v^{i} \frac{\partial}{\partial x^{i}}$ and $v=\tilde{v}^{j} \frac{\partial}{\partial \tilde{x}^{j}}$. How are the v^{i} and \tilde{v}^{j} related?
- Note that $\tilde{v}^{j}=v\left(\tilde{x}^{j}\right)=v^{i} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$.
- Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y). What is the vector $\frac{\partial}{\partial r}+2 \frac{\partial}{\partial \theta}$ in terms of $\hat{i}=\frac{\partial}{\partial x}$ and $\hat{j}=\frac{\partial}{\partial y}$? It is $\frac{\partial x}{\partial r} \hat{i}+\frac{\partial y}{\partial r} \hat{j}+2 \frac{\partial x}{\partial \theta} \hat{i}+2 \frac{\partial y}{\partial \theta} \hat{j}$.
- Example (Caution!):Let $\tilde{x}=x, \tilde{y}=y+x^{3}$. Let $p=(1,0)$ in (x, y) coordinates. Is $\left.\frac{\partial}{\partial x}\right|_{p}=\left.\frac{\partial}{\partial \tilde{x}}\right|_{p} ? \frac{\partial}{\partial x}=\frac{\partial \tilde{x}}{\partial x} \frac{\partial}{\partial \tilde{x}}+\frac{\partial \tilde{y}}{\partial x} \frac{\partial}{\partial \tilde{y}}$ which at p is $\frac{\partial}{\partial \tilde{x}}+3 \frac{\partial}{\partial \tilde{y}}$.

Example: Tangent space of S^{n}

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth.

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus $i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates:

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$.

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance,

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance, on $U_{+}, i\left(z^{1}=\frac{x^{1}}{1-x^{n+1}}, \ldots, z^{n}=\frac{x^{n}}{1-x^{n+1}}\right)=\left(x^{1}=\right.$ $\left.\frac{2 z^{i}}{1+\sum_{j}\left(z^{j}\right)^{2}}, x^{2}, \ldots, x^{n+1}=\frac{\sum_{j}\left(z^{j}\right)^{2}-1}{\sum_{j}\left(z^{j}\right)^{2}+1}\right)$. In these coordinates,

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance, on $U_{+}, i\left(z^{1}=\frac{x^{1}}{1-x^{n+1}}, \ldots, z^{n}=\frac{x^{n}}{1-x^{n+1}}\right)=\left(x^{1}=\right.$ $\left.\frac{2 z^{i}}{1+\sum_{j}\left(z^{j}\right)^{2}}, x^{2}, \ldots, x^{n+1}=\frac{\sum_{j}\left(z^{j}\right)^{2}-1}{\sum_{j}\left(z^{j}\right)^{2}+1}\right)$. In these coordinates, $i_{*} \frac{\partial}{\partial z^{i}}=\frac{\partial x^{j}}{\partial z^{i}} \frac{\partial}{\partial x^{j}}$.

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance, on $U_{+}, i\left(z^{1}=\frac{x^{1}}{1-x^{n+1}}, \ldots, z^{n}=\frac{x^{n}}{1-x^{n+1}}\right)=\left(x^{1}=\right.$ $\left.\frac{2 z^{i}}{1+\sum_{j}\left(z^{j}\right)^{2}}, x^{2}, \ldots, x^{n+1}=\frac{\sum_{j}\left(z^{j}\right)^{2}-1}{\sum_{j}\left(z^{j}\right)^{2}+1}\right)$. In these coordinates, $i_{*} \frac{\partial}{\partial z^{i}}=\frac{\partial x^{j}}{\partial z^{i}} \frac{\partial}{\partial x^{j}}$. It can be easily seen that

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus
$i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance, on $U_{+}, i\left(z^{1}=\frac{x^{1}}{1-x^{n+1}}, \ldots, z^{n}=\frac{x^{n}}{1-x^{n+1}}\right)=\left(x^{1}=\right.$ $\left.\frac{2 z^{i}}{1+\sum_{j}\left(z^{j}\right)^{2}}, x^{2}, \ldots, x^{n+1}=\frac{\sum_{j}\left(z^{j}\right)^{2}-1}{\sum_{j}\left(z^{j}\right)^{2}+1}\right)$. In these coordinates, $i_{*} \frac{\partial}{\partial z^{i}}=\frac{\partial x^{j}}{\partial z^{i}} \frac{\partial}{\partial x^{j}}$. It can be easily seen that i_{*} is $1-1$ and that

Example: Tangent space of S^{n}

- Recall that $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth. Thus $i_{*}: T_{p} S^{n} \rightarrow T_{p} R^{n+1}$ is a linear map.
- In coordinates: Consider the stereographic charts $U_{ \pm}$. For instance, on $U_{+}, i\left(z^{1}=\frac{x^{1}}{1-x^{n+1}}, \ldots, z^{n}=\frac{x^{n}}{1-x^{n+1}}\right)=\left(x^{1}=\right.$ $\left.\frac{2 z^{i}}{1+\sum_{j}\left(z^{j}\right)^{2}}, x^{2}, \ldots, x^{n+1}=\frac{\sum_{j}\left(z^{j}\right)^{2}-1}{\sum_{j}\left(z^{j}\right)^{2}+1}\right)$. In these coordinates, $i_{*} \frac{\partial}{\partial z^{i}}=\frac{\partial x^{j}}{\partial z^{i}} \frac{\partial}{\partial x^{j}}$. It can be easily seen that i_{*} is $1-1$ and that its image is precisely the usual tangent plane at p.

Another definition of the tangent space (a physicist's

 definition)
Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e.,

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as

$$
v \in V_{U, x} \sim w \in V_{W, y} \text { if }
$$

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as

$$
v \in V_{U, x} \sim w \in V_{W, y} \text { if } v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p) .
$$

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as

$$
v \in V_{U, x} \sim w \in V_{W, y} \text { if } v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p) .
$$

- This relation is an equivalence relation (why?)

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\sim} M$.

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\tilde{M}}$. It is a vector space (how?)

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\tilde{M}}$. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map,

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\tilde{M}}$. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map, define $\tilde{F}_{*}([v])=[D F v]$.

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\sim} M$. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map, define $\tilde{F}_{*}([v])=[D F v]$.
- Consider the (choice-free/canonical) map $F: T_{p} M \rightarrow T_{p}^{\sim} M$ given by

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as $v \in V_{U, x} \sim w \in V_{W, y}$ if $v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p)$.
- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\sim} M$. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map, define $\tilde{F}_{*}([v])=[D F v]$.
- Consider the (choice-free/canonical) map $F: T_{p} M \rightarrow T_{p}^{\sim} M$ given by $v \rightarrow\left[v^{i}\right]$.

Another definition of the tangent space (a physicist's definition)

- Let M be a manifold (with or without boundary)
- Consider the set \mathcal{S} of all the coordinate charts (U, x) containing p.
- For every $(U, x) \in \mathcal{S}$, consider the vector space $V_{U, x}=\mathbb{R}^{n}$, i.e., consider the disjoint union of \mathbb{R}^{n} over U, x.
- Define a relation \sim on this disjoint union as

$$
v \in V_{U, x} \sim w \in V_{W, y} \text { if } v^{i}=w^{j} \frac{\partial x^{i}}{\partial y^{j}}(p) .
$$

- This relation is an equivalence relation (why?) The set of equivalence classes is defined to be $T_{p}^{\sim} M$. It is a vector space (how?)
- Suppose $F: M \rightarrow N$ is a smooth map, define $\tilde{F}_{*}([v])=[D F v]$.
- Consider the (choice-free/canonical) map $F: T_{p} M \rightarrow T_{p}^{\sim} M$ given by $v \rightarrow\left[v^{i}\right]$. This map is a linear isomorphism that commutes with pushforwards (HW)

Velocities of paths

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M,

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path.

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning:

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$.

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)
- It acts on smooth functions as

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma^{\prime}\left(t_{0}\right)(f)=(f \circ \gamma)^{\prime}\left(t_{0}\right)$.

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma^{\prime}\left(t_{0}\right)(f)=(f \circ \gamma)^{\prime}\left(t_{0}\right)$.
- Suppose $\left(U, x^{i}\right)$ is a coordinate chart around p,

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma^{\prime}\left(t_{0}\right)(f)=(f \circ \gamma)^{\prime}\left(t_{0}\right)$.
- Suppose $\left(U, x^{i}\right)$ is a coordinate chart around p, $\gamma^{\prime}\left(t_{0}\right)=\frac{d \gamma^{i}}{d t}\left(t_{0}\right) \frac{\partial}{\partial x^{i}}$, i.e.,

Velocities of paths

- Given an interval $J \subset \mathbb{R}$ and a smooth manifold (with or without boundary) M, a smooth path passing through $p \in M$ is a smooth function $\gamma: J \rightarrow M$ such that $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in J$. (Typically, a curve is the image of a path. Warning: Lee calls paths as curves.)
- Note that the $T_{t} J=\mathbb{R}$ for every $t \in J$. The velocity of a smooth path at t_{0} is $\gamma^{\prime}\left(t_{0}\right)=\left(\gamma_{*}\right)_{t_{0}}\left(\frac{d}{d t}\right) \in T_{p} M$. (One also denotes it by various other symbols.)
- It acts on smooth functions as $\gamma^{\prime}\left(t_{0}\right)(f)=(f \circ \gamma)^{\prime}\left(t_{0}\right)$.
- Suppose $\left(U, x^{i}\right)$ is a coordinate chart around p,

$$
\gamma^{\prime}\left(t_{0}\right)=\frac{d \gamma^{i}}{d t}\left(t_{0}\right) \frac{\partial}{\partial x^{i}} \text {, i.e., } \gamma^{\prime}\left(t_{0}\right)(f)=\frac{\partial f}{\partial x^{i}}(p) \frac{d \gamma^{i}}{d t}\left(t_{0}\right) .
$$

Velocities of paths

4 ロ * 岛

Velocities of paths

- Proposition:

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof:

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial):

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is $F_{*}\left(\gamma^{\prime}\left(t_{0}\right)\right)$.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is $F_{*}\left(\gamma^{\prime}\left(t_{0}\right)\right)$.
- Computing the differential:

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is $F_{*}\left(\gamma^{\prime}\left(t_{0}\right)\right)$.
- Computing the differential: Suppose $F: M \rightarrow N$ is smooth and $v \in T_{p} M$.

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is $F_{*}\left(\gamma^{\prime}\left(t_{0}\right)\right)$.
- Computing the differential: Suppose $F: M \rightarrow N$ is smooth and $v \in T_{p} M$. Then $F_{*} v=(F \circ \gamma)^{\prime}(0)$ where

Velocities of paths

- Proposition: Every $v \in T_{p} M$ is the velocity of some smooth path in M passing through p.
- Proof: Choose a chart (U, x) centred at p. Now $v=v^{i} \frac{\partial}{\partial x^{i}}$. Choose the smooth path $\gamma(t)=t\left(v^{1}, \ldots, v^{n}\right)$ (abusing notation). Also the domain of γ depends on whether we are dealing with a boundary point or an interior point. Clearly $\gamma^{\prime}(0)=v$.
- Composition (trivial): Let $F: M \rightarrow N$ be a smooth map and $\gamma: J \rightarrow M$ be a smooth path. Then the velocity of $F \circ \gamma$ at t_{0} is $F_{*}\left(\gamma^{\prime}\left(t_{0}\right)\right)$.
- Computing the differential: Suppose $F: M \rightarrow N$ is smooth and $v \in T_{p} M$. Then $F_{*} v=(F \circ \gamma)^{\prime}(0)$ where $\gamma(0)=p, \gamma^{\prime}(0)=v$.

Equivalence classes of curves

Equivalence classes of curves

- Basically, all tangent vectors

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths.

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p$:
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if
$\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if
$\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if
$\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if
$\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map,
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if
$\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply [γ].
- Defining a vector space structure isn't easy.
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is:
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (Why is this well-defined?)
- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (Why is this well-defined?) This map is a bijection (why?)

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (Why is this well-defined?) This map is a bijection (why?) Thus this canonical map can be used

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (Why is this well-defined?) This map is a bijection (why?) Thus this canonical map can be used to define the vector space structure such that

Equivalence classes of curves

- Basically, all tangent vectors are velocity vectors of smooth paths. We can turn this around to define tangent vectors.
- Consider the relation \sim between smooth paths $\gamma: J \rightarrow M$ where $0 \in J$ and $\gamma(0)=p: \gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for any real-valued smooth function defined on a neighbourhood of p. This relation is an equivalence relation (why?).
- $V_{p} M$ is defined to be the set of equivalence classes. If $F: M \rightarrow N$ is a smooth map, then $F_{*}[\gamma]=[F \circ \gamma]$. The velocity of a smooth path γ is simply $[\gamma]$.
- Defining a vector space structure isn't easy. The simplest way is: Consider the map $T: V_{p} M \rightarrow T_{p} M$ as $[\gamma] \rightarrow \gamma^{\prime}(0)$. (Why is this well-defined?) This map is a bijection (why?) Thus this canonical map can be used to define the vector space structure such that it is a linear isomorphism.

Generalising a HW problem

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$,

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3).

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$?

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere?

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! (

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! $\left(f:(-\pi, \pi) \rightarrow \mathbb{R}^{2}\right.$ given by $\left.f(t)=(\sin (2 t), \sin (t))\right)$.

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! $\left(f:(-\pi, \pi) \rightarrow \mathbb{R}^{2}\right.$ given by $\left.f(t)=(\sin (2 t), \sin (t))\right)$.
- So if $f: M \rightarrow N$ (manifolds without boundary) is a smooth map $(n<m), q \in N$,

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! $\left(f:(-\pi, \pi) \rightarrow \mathbb{R}^{2}\right.$ given by $\left.f(t)=(\sin (2 t), \sin (t))\right)$.
- So if $f: M \rightarrow N$ (manifolds without boundary) is a smooth map $(n<m), q \in N$, such that $f_{*}: T_{p} M \rightarrow T_{f(p)=q} N$ is surjective whenever $f(p)=q$,

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! $\left(f:(-\pi, \pi) \rightarrow \mathbb{R}^{2}\right.$ given by $\left.f(t)=(\sin (2 t), \sin (t))\right)$.
- So if $f: M \rightarrow N$ (manifolds without boundary) is a smooth $\operatorname{map}(n<m), q \in N$, such that $f_{*}: T_{p} M \rightarrow T_{f(p)=q} N$ is surjective whenever $f(p)=q$, then can $f^{-1}(q)$ be made into a smooth manifold?

Generalising a HW problem

- Recall that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}(k<n)$ is a smooth map such that $D f_{a}$ has full rank $=k$, that is, it is surjective whenever $f(a)=0$, then $f^{-1}(0)$ "can be made into" a smooth manifold (HW 3). By the way, why $k<n$?
- What about the image of a smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $(m>n)$, i.e., $D f$ is $1-1$? Even one where $D f$ has full rank everywhere? One can find a counterexample where f is also $1-1$ in addition to $D f$ being $1-1$ everywhere! $\left(f:(-\pi, \pi) \rightarrow \mathbb{R}^{2}\right.$ given by $\left.f(t)=(\sin (2 t), \sin (t))\right)$.
- So if $f: M \rightarrow N$ (manifolds without boundary) is a smooth $\operatorname{map}(n<m), q \in N$, such that $f_{*}: T_{p} M \rightarrow T_{f(p)=q} N$ is surjective whenever $f(p)=q$, then can $f^{-1}(q)$ be made into a smooth manifold? Likewise, what about the other case?

Immersions and submersions

Immersions and submersions

- Definitions:

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts).

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point,

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$,

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$,

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition:

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.
- Proof:

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates,

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function [DF] has full rank at p iff

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function $[D F]$ has full rank at p iff a minor is non-zero.

Immersions and submersions

- Definitions: Let M, N be smooth manifolds (with or without boundary) and $F: M \rightarrow N$ be a smooth map. The rank of F at p is defined to be the rank of $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ (which is the same as the rank of $[D F]_{p}$ in coordinate charts). If F has the same rank at every point, then it is said to have constant rank. If $\left(F_{*}\right)_{p}$ has full rank, then F is said to have full rank at p. If $\left(F_{*}\right)_{p}$ is surjective for all $p \in M$, then F is called a submersion. It is $1-1$ for all $p \in M$, then F is said to be an immersion.
- Proposition: If $\left(F_{*}\right)_{p}$ is surjective, then p has a neighbourhood U such that $F: U \rightarrow N$ is a submersion. Likewise for injectivity at p.
- Proof: Indeed, choosing coordinates, the smooth matrix-valued function [DF] has full rank at p iff a minor is non-zero. That minor will continue to be non-zero in a neighbourhood.

Examples and non-examples

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion.

Likewise for inclusions into products of manifolds.

- Let $\gamma: J \rightarrow M$ be a smooth map.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion.

Likewise for inclusions into products of manifolds.

- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^{2} into \mathbb{R}^{3}.

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^{2} into \mathbb{R}^{3}.
- A 1-1 immersion

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^{2} into \mathbb{R}^{3}.
- A 1-1 immersion need not

Examples and non-examples

- $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not of constant rank. It is an immersion (and a submersion) at $x=1$ for instance.
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x$ is a submersion. Likewise for projections from products of manifolds.
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=(x, y, 0)$ is an immersion. Likewise for inclusions into products of manifolds.
- Let $\gamma: J \rightarrow M$ be a smooth map. Then γ is an immersion iff $\gamma^{\prime}(t) \neq 0$ for all $t \in J$.
- A circle rotated about an axis can be thought of as an immersion of \mathbb{R}^{2} into \mathbb{R}^{3}.
- A 1-1 immersion need not be a homeomorphism to its image.

