HW 4 (to be submitted by Feb 18)

- 1. (15 marks) Let M be a manifold (with or without boundary). Consider the set S of all the coordinate charts (U, x) containing p. For every $(U, x) \in S$, consider the vector space $V_{U,x} = \mathbb{R}^n$, i.e., consider the disjoint union $W = \bigcup_{U,x} V_{U,x}$ of \mathbb{R}^n over U, x. Define a relation \sim on W as $v \in V_{U,x} \sim w \in V_{W,y}$ if $v^i = w^j \frac{\partial x^i}{\partial y^j}(p)$.
 - (a) Prove that this relation is an equivalence relation.
 - (b) The set of equivalence classes is defined to be T_pM . Prove that it is a vector space under [v] + [w] = [v + w] and c.[v] = [cv].
 - (c) Suppose $F: M \to N$ is a smooth map, define $\tilde{F}_*([v]) = [DFv]$. Prove that this definition is well-defined.
 - (d) Consider the (choice-free/canonical) map $F: T_pM \to T_pM$ given by $v \to [v^i]$. Prove that this map is well-defined and a linear isomorphism that commutes with pushforwards. (Part of the exercise is to make sense of this statement.)
- 2. (10 marks) Prove that the closed unit ball in \mathbb{R}^{n+1} is a smooth manifold-with-boundary and that the inclusion map is smooth.