HW 6 (to be submitted by Apr 8)

- 1. (9 marks) Show that covectors/1-forms $\omega_1, \ldots, \omega_k$ on a finite-dimensional vector space are linearly dependent iff $\omega^1 \wedge \ldots \omega^k = 0$.
- 2. (6 marks) Compute $F^*\omega$ in the following examples. $(F:M\to N)$ is a given smooth map and ω is a given smooth form-field on N)
 - (a) $M = N = \mathbb{R}^2$, $F(s,t) = (st, e^t)$, $\omega = xdy ydx$.
 - (b) $M = N = \mathbb{R}^3$, $F(u, v, w) = (u^2, uv, uvw)$, $\omega = xdy \wedge dz + y^2dz \wedge dx$.
- 3. (10 marks) Prove that there is a smooth vector field on \mathbb{R}^n whose associated time t=1 diffeomorphism from \mathbb{R}^n to itself interchanges a given pair of points (p,q).