NOTES FOR 20 SEPT (THURSDAY)

1. Recap

- (1) Prove that *X* is locally connected if and only if for every open set *U*, every component is open.
- (2) Also proved that connected locally path connected sets are path connected.
- (3) Defined compactness and gave examples and counterexamples.
- (4) Stated that continuous functions take compact sets to compact sets, closed subsets of compacts are compact, and compact subsets of Hausdorff spaces are closed.

2. Compactness

Theorem 2.1. Let $f : X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof. Note that bijective closed continuous maps are homoeomorphisms. Now if $A \subset X$ is closed, it is compact. Thus $f(A) \subset Y$ is compact and hence closed.

The hypotheses above are quite important. For instance,

Suppose *X* is finite. Then $Id : (X, discrete) \rightarrow (X, indiscrete)$ is bijective and continuous and *X* is compact (under both topologies) but not Hausdorff under the indiscrete topology. Of course *Id* cannot be a homeomorphism because the number of open sets don't tally.

Theorem 2.2. *Finite products of compact sets are compact.*

Actually, we have Tychonoff's theorem - Arbitrary products under the product topology of compact sets is compact. But this is fairly non-trivial (and uses a version of the axiom of choice). Let us prove only the finite version here. In fact, we shall prove that $X \times Y$ is compact when X and Y are. Finite products follows from induction.

Proof. We first prove a "tube lemma".

Lemma 2.3. Consider the produce space $X \times Y$ where Y is compact. If $N \subset X \times Y$ is an open set containing a slice $S = \{x_0\} \times Y$, then N contains a "tube" $W \times Y$ where W is a neighbourhood of $\{x_0\}$.

Proof. For every point $(x_0, y) \in S$, there exists a basis neighbourhood $(x_0, y) \in W_y \times U_y \subset N$. Now $\cup_{y \in Y} U_y = Y$ and hence by compactness of Y, $U_{y_1} \cup U_{y_2} \dots U_{y_n} = Y$. Let $W = W_{y_1} \cap W_{y_2} \cap \dots W_{y_n}$ be an open subset of X. Then $\cup_i W \times U_{y_i} = W \times Y \subset N$ is the desired tube.

Now if \mathcal{A} is an open cover of $X \times Y$, for every $x \in X$, consider the compact slice $S_x = \{x\} \times Y$. Hence, there is a finite subcover $V_{x,1} \dots V_{x,n_x}$ from \mathcal{A} covering this slice. Let $N_x = V_{x,1} \cup \dots$ Now the slice $S_x \subset N_x$. By the tube lemma, there exists a tube $W_x \times Y \subset N_x$. The open sets W_x cover the compact set X and hence there is a finite subcover W_{x_1}, \dots, W_{x_m} . Thus $V_{x_i,j}$ is a finite subcover of $X \times Y$. It is crucial for the tube lemma that *Y* be compact. Here is a counterexample - $N = \{(x, y) \in \mathbb{R}^2 : |x| < \frac{1}{y^2+1}\}$. This has no tube of around $\{0\} \times \mathbb{R}$.

Recall the nested intervals theorem in real analysis - If you have a sequence of nested closed bounded intervals, their intersection is non-empty. (This is not true if they are open for instance. Ex - $(0, 1) \supset (\frac{1}{2}, 1) \supset (1 - \frac{1}{3}, 1) \dots$)

Actually compactness is the crucial generalisation of this theorem. (The following theorem is used in the proof of the Tychonoff and the Baire category theorems.) Indeed,

Theorem 2.4. Let X be a topological space. Then X is compact if and only if for every collection of closed sets in X having the finite intersection property (that is, every finite intersection is non-empty), the intersection of all the sets is non-empty.

Proof. Suppose X is compact : Take the complements of the closed sets $U_i = C_i^c$. If $\cap_i C_i = \phi$, then $\cup_i U_i = X$ (by De Morgan's laws). Then there is a finite subcover $X = U_1 \cup U_2 \dots U_n$. This means that $C_1 \cap C_2 \dots C_n = \phi$. A contradiction.

Conversely, if U_i is an open cover of X without a finite subcover then $U_i^c = C_i$ are closed sets having the finite intersection property. Hence $\bigcap_i C_i \neq \phi$ which means that U_i cannot be an open cover.

3. Compact subsets of the real line

Firstly,

Lemma 3.1. *Closed bounded intervals* $[a, b] \subset \mathbb{R}$ *are compact.*

Proof. Two proofs. Suppose U_i form a cover of [a, b]. Then :

- (1) The set *S* of all numbers $b \ge c \ge a$ such that [a, c] is covered by a finite subcollection is bounded above and non-empty. Hence it has a least upper bound *l*. Now $l \in U_j$ for some *j*. Thus $(l \epsilon, l + \epsilon) \subset U_j$ for some $\epsilon > 0$. Since *l* is the l.u.b of *S*, there exists a $c \in (l \epsilon, l) \cap S$. This means that $[a, l + \frac{\epsilon}{2}]$ can be covered by a finite subcollection (including U_j if necessary).
- (2) Take the set *S* as above. It is non-empty. We will show that it is open and closed. Hence, by the connectedness of [a, b], S = [a, b]. If $c \in S$, then $c \in U_j$ for some *j*. So $(c \epsilon, c + \epsilon) \subset U_j$. This means that $[a, c + \frac{\epsilon}{2}]$ can be covered by a finite subcollection (including U_j). This shows openness.

To show that *S* is closed, suppose $c \in S^c$. So $c \in U_k$ for some *k*, meaning that so is $(c - \delta, c + \delta) \subset U_k$. If any element of $(c - \delta, c + \delta)$ is in *S*, then the entire open interval is in *S* (by simply including U_k in the finite subcollection). Hence S^c is open.

This can be used to prove the following important result.

Theorem 3.2. A subspace A of \mathbb{R}^n is compact if and only if it is closed and bounded under the Euclidean *metric*.

Proof. Note that the Euclidean metric is equivalent to the "square" metric. Hence a subset is bounded if and only if it is contained in a large closed cube.

Suppose *A* is closed and bounded : Since [a, b] is compact, so is any closed cube (it is a Cartesian product of closed intervals). Since *A* is bounded, it is a subset of a large cube, which is compact. So *A* is compact.

Suppose *A* is compact : Since \mathbb{R}^n is Hausdorff, *A* is closed. Suppose *A* is not contained in any cube, i.e., if one takes a sequence of open cubes C_n of size *n* centred at the origin, then there is at least one

2

point $p_n \in A$ outside C_n for every n. So there cannot be a finite subcover of this open cover of A. (This is an open cover of all of \mathbb{R}^n actually.)

(Warning : Please note that this property is true for \mathbb{R}^n but may fail for other metric spaces. For instance, if you take the space C[a, b], then closed bounded sets need not be compact. The missing condition is called equicontinuity. This is the content of the Arzela-Ascoli theorem.)