
NOTES FOR 20 SEPT (THURSDAY)

1. Recap

(1) Prove that X is locally connected if and only if for every open set U, every component is
open.

(2) Also proved that connected locally path connected sets are path connected.
(3) Defined compactness and gave examples and counterexamples.
(4) Stated that continuous functions take compact sets to compact sets, closed subsets of com-

pacts are compact, and compact subsets of Hausdorff spaces are closed.

2. Compactness

Theorem 2.1. Let f : X→ Y be a bijective continuous function. If X is compact and Y is Hausdorff, then f
is a homeomorphism.

Proof. Note that bijective closed continuous maps are homoeomorphisms. Now if A ⊂ X is closed,
it is compact. Thus f (A) ⊂ Y is compact and hence closed. �

The hypotheses above are quite important. For instance,
Suppose X is finite. Then Id : (X, discrete) → (X, indiscrete) is bijective and continuous and X is
compact (under both topologies) but not Hausdorff under the indiscrete topology. Of course Id
cannot be a homeomorphism because the number of open sets don’t tally.

Theorem 2.2. Finite products of compact sets are compact.

Actually, we have Tychonoff’s theorem - Arbitrary products under the product topology of
compact sets is compact. But this is fairly non-trivial (and uses a version of the axiom of choice).
Let us prove only the finite version here. In fact, we shall prove that X × Y is compact when X and
Y are. Finite products follows from induction.

Proof. We first prove a “tube lemma”.

Lemma 2.3. Consider the produce space X × Y where Y is compact. If N ⊂ X × Y is an open set containing
a slice S = {x0} × Y, then N contains a “tube” W × Y where W is a neighbourhood of {x0}.

Proof. For every point (x0, y) ∈ S, there exists a basis neighbourhood (x0, y) ∈ Wy × Uy ⊂ N. Now
∪y∈YUy = Y and hence by compactness of Y, Uy1 ∪Uy2 . . .Uyn = Y. Let W = Wy1 ∩Wy2 ∩ . . .Wyn be
an open subset of X. Then ∪iW ×Uyi = W × Y ⊂ N is the desired tube. �

Now if A is an open cover of X × Y, for every x ∈ X, consider the compact slice Sx = {x} × Y.
Hence, there is a finite subcover Vx,1 . . .Vx,nx from A covering this slice. Let Nx = Vx,1 ∪ . . .. Now
the slice Sx ⊂ Nx. By the tube lemma, there exists a tube Wx × Y ⊂ Nx. The open sets Wx cover the
compact set X and hence there is a finite subcover Wx1 , . . . ,Wxm . Thus Vxi, j is a finite subcover of
X × Y. �
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It is crucial for the tube lemma that Y be compact. Here is a counterexample - N = {(x, y) ∈ R2 :
|x| < 1

y2+1 }. This has no tube of around {0} ×R.
Recall the nested intervals theorem in real analysis - If you have a sequence of nested closed

bounded intervals, their intersection is non-empty. (This is not true if they are open for instance. Ex
- (0, 1) ⊃ ( 1

2 , 1) ⊃ (1 − 1
3 , 1) . . ..)

Actually compactness is the crucial generalisation of this theorem. (The following theorem is
used in the proof of the Tychonoff and the Baire category theorems.) Indeed,

Theorem 2.4. Let X be a topological space. Then X is compact if and only if for every collection of closed sets
in X having the finite intersection property (that is, every finite intersection is non-empty), the intersection
of all the sets is non-empty.

Proof. Suppose X is compact : Take the complements of the closed sets Ui = Cc
i . If ∩iCi = φ, then

∪iUi = X (by De Morgan’s laws). Then there is a finite subcover X = U1∪U2 . . .Un. This means that
C1 ∩ C2 . . .Cn = φ. A contradiction.
Conversely, if Ui is an open cover of X without a finite subcover then Uc

i = Ci are closed sets having
the finite intersection property. Hence ∩iCi , φ which means that Ui cannot be an open cover. �

3. Compact subsets of the real line

Firstly,

Lemma 3.1. Closed bounded intervals [a, b] ⊂ R are compact.

Proof. Two proofs. Suppose Ui form a cover of [a, b]. Then :
(1) The set S of all numbers b ≥ c ≥ a such that [a, c] is covered by a finite subcollection is

bounded above and non-empty. Hence it has a least upper bound l. Now l ∈ U j for some j.
Thus (l − ε, l + ε) ⊂ U j for some ε > 0. Since l is the l.u.b of S, there exists a c ∈ (l − ε, l) ∩ S.
This means that [a, l + ε

2 ] can be covered by a finite subcollection (including U j if necessary).
(2) Take the set S as above. It is non-empty. We will show that it is open and closed. Hence, by

the connectedness of [a, b], S = [a, b]. If c ∈ S, then c ∈ U j for some j. So (c − ε, c + ε) ⊂ U j.
This means that [a, c + ε

2 ] can be covered by a finite subcollection (including U j). This shows
openness.
To show that S is closed, suppose c ∈ Sc. So c ∈ Uk for some k, meaning that so is (c−δ, c+δ) ⊂
Uk. If any element of (c − δ, c + δ) is in S, then the entire open interval is in S (by simply
including Uk in the finite subcollection). Hence Sc is open.

�

This can be used to prove the following important result.

Theorem 3.2. A subspace A of Rn is compact if and only if it is closed and bounded under the Euclidean
metric.

Proof. Note that the Euclidean metric is equivalent to the “square” metric. Hence a subset is bounded
if and only if it is contained in a large closed cube.
Suppose A is closed and bounded : Since [a, b] is compact, so is any closed cube (it is a Cartesian
product of closed intervals). Since A is bounded, it is a subset of a large cube, which is compact. So
A is compact.
Suppose A is compact : Since Rn is Hausdorff, A is closed. Suppose A is not contained in any cube,
i.e., if one takes a sequence of open cubes Cn of size n centred at the origin, then there is at least one
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point pn ∈ A outside Cn for every n. So there cannot be a finite subcover of this open cover of A.
(This is an open cover of all of Rn actually.) �

(Warning : Please note that this property is true for Rn but may fail for other metric spaces. For
instance, if you take the space C[a, b], then closed bounded sets need not be compact. The missing
condition is called equicontinuity. This is the content of the Arzela-Ascoli theorem.)
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