NOTES FOR 4 OCT (THURSDAY)

1. Recap

- (1) Proved that finite products of compact sets are compact.
- (2) A subset of \mathbb{R}^n is compact if and only if it is closed and bounded. (This is not true for other metric spaces.)

2. Compactness

In the exam we proved that

Theorem 2.1. Compact subsets of metric spaces are closed and bounded.

Now we prove the following generalisation of the extreme value theorem.

Theorem 2.2. If $f : X \to \mathbb{R}$ is a continuous function and X a compact space, then there exist $a, b \in X$ such that $f(a) \ge f(x) \forall x \in X$ and likewise $f(b) \le f(X) \forall x \in X$.

Proof. f takes compact sets to compact sets. Hence $f(X) \subset \mathbb{R}$ is closed and bounded. Suppose $M = \sup_{x \in X} f(x)$. (Of course $M < \infty$ because f(X) is bounded.) Assume that $M \notin f(X)$. Since f(X) is closed, there exists an interval $(M - \epsilon, M + \epsilon) \notin f(X)$ (because the complement is open). This contradicts the fact that *M* is the least upper bound. Likewise, $\inf f(X) \in f(X)$.

Now we make a definition - Suppose $A \subset X$ is nonempty, X is a metric space, and $x \in X$. The distance to A is defined as $d(x, A) = \inf\{d(x, a) : a \in A\}$. It is not at all obvious that $d(x, A) = d(x, a_x)$ for some $a_x \in A$. In fact, this is usually not true. For instance, take x = 0 and A = (0, 1). Then d(x, A) = 0 but $x \notin A$.

Here is the first observation about this distance function :

Lemma 2.3. The function f(x) = d(x, A) is a continuous function of x.

Proof. Suppose *x*, *yinX*. By definition, $d(x, A) \le d(x, a) \le d(x, y) + d(y, a)$ for every $a \in A$. Hence, $d(x, A) - d(x, y) \le d(y, a)$ and hence $d(x, A) - d(x, y) \le d(y, A)$. This means that $d(x, A) - d(y, A) \le d(x, y)$ and the same inequality holds with *x* and *y* interchanged. Hence continuity holds.

Recall that the diameter of a subset $A \subset X$ of a metric space is $\sup_{a,b \in A} d(a, b)$. We prove a very important lemma - the Lebesgue Number Lemma (especially in algebraic topology) about the diameter.

Theorem 2.4. Let \mathcal{A} be an open cover of the metric space (X, d). If X is compact, there exists a number $\delta_{\mathcal{A}}$ (called the Lebesgue Number of the open cover \mathcal{A}) such that every subset of X having diameter $< \delta$ is contained in some element of \mathcal{A} .

Proof. Assume without loss of generality that X itself is not an element of \mathcal{A} .

Choose a finite subcover A_1, \ldots, A_n of X. For each i, let $C_i = X - A_i$. Define $f : X \to \mathbb{R}$ by $f(x) = \frac{\sum_i d(x,C_i)}{n}$.

Claim : f(x) > 0 for all $x \in X$. Proof : Given $x \in X$, choose an i so that $x \in A_i$. Since A_i is open, an ϵ -ball around x also lies in A_i . Hence, $d(x, C_i) \ge \frac{\epsilon}{n}$.

NOTES FOR 4 OCT (THURSDAY)

Since *f* is continuous on a compact set, it has a minimum value $\delta > 0$. We claim that $\delta_{\mathcal{A}} = \delta$. Indeed, suppose $B \subset X$ has diameter less than δ . Choose a point $x_0 \in B$. Clearly, the δ open ball around x_0 contains *B*. Now $\delta \leq f(x_0) \leq d(x_0, C_m)$ where $d(x_0, C_m)$ is the largest of all $d(x_0, C_i)$. Then the δ -neighbourhood of x_0 is contained in the element A_m .

Now we make a definition : A function $f : (X, d_X) \rightarrow (Y, d_Y)$ is called uniformly continuous if for every $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $d(x, y) < \delta$, $d(f(x), f(y)) < \epsilon$ (that is, δ depends only on ϵ and not on x, y).

Theorem 2.5. If $f : (X, d_X) \to (Y, d_Y)$ is continuous and X is compact, then it is uniformly continuous.

Proof. Given $\epsilon > 0$, take the open cover of Y given by the open balls $B(y_0, \frac{\epsilon}{2})$. Let \mathcal{A} be the open cover of X given by the inverse images of these balls. Let δ be the Lebesgue number of this open cover. Then, whenever $d(x, y) < \delta$, x, y are in one of the A_i . Thus $d(f(x), y_i) < \frac{\epsilon}{2}$ and likewise for y. By the triangle inequality we are done.

To go further, we shall define the notion of a limit point : x is said to be a limit point of a subset $A \subset X$ if every open neighbourhood of x intersects in A in a point other than x itself, i.e., every "deleted open neighbourhood intersects A". We have the following result.

Theorem 2.6. Let $A \subset X$. Then \overline{A} consists of A along with all of its limit points A's.

Proof. Firstly,

Lemma 2.7. $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.

Proof. If $x \notin \overline{A}$ then $U = X - \overline{A}$ is an open set that contains *x* not intersecting *A*. If *U* is an open neighbourhood of *x* not intersecting *A*, then U^c is closed and contains *A*. Hence $\overline{A} \subset U^c$. This means that $x \notin \overline{A}$.

Now, if $x \in A \cup A'$, by the above theorem, $x \in \overline{A}$. So $A \cup A' \subset \overline{A}$. If $x \in \overline{A}$, then either $x \in A$ or every neighbourhood of x intersects A and hence x is a limit point of A. Thus $\overline{A} \subset A \cup A'$.

For future reference, here is an important definition - A sequence $x_1, ..., x_n, ...$ is said to converge to x if for every neighbourhood U of x, there exists an N_U such that $n \ge N_U$ implies that $x_n \in U$. (Note that x is a limit point of the sequence.) It is easy to show that if X is Hausdorff, every sequence converges to at most one point.