## NOTES FOR 4 SEPT (TUESDAY)

## 1. Recap

(1) Definition of a topology in terms of open (and equivalently, closed) sets. Examples (Indiscrete, discrete, metric, subspace, product, quotient).
(2) Quotient map examples: Open (projections are open but not necessarily closed) and closed maps ( $[0,1] \cup[2,3] \rightarrow[0,2]$ by a piecewise linear map is closed but not open) and examples which are neither but quotient maps nonetheless.
(3) Connectedness - Motivation - Find a property that generalises the IVT (Why care about the IVT in the first place ?)
(4) Connectedness - Definition - A separation of X is a pair $U \neq \phi, V \neq \phi$ of disjoint open sets such that $X=U \cup V$. Clearly, $U, V$ are clopen in $X$. $X$ is connected if there is no such separation.
(5) Examples and counterexamples of connected sets
(a) Discrete topology - No non-singleton is connected.
(b) Indiscrete topology - All proper non-empty subsets are connected.
(c) Rationals are disconnected $((-\infty, \sqrt{2}) \cap \mathbb{Q}$ and its complement induce a separation).
(6) Theorem : $X$ is connected if and only if every continuous function $f: X \rightarrow\{0,1\}$ is a constant.
(7) Theorem : If $X=A \cup B$ is a separation, and $Y \subset X$ is connected, then $Y \subset A$ or $Y \subset B$.
(8) Corollaries:
(a) If $A \subset X$ is connected, and $A \subset B \subset \bar{A}$, then $B$ is connected.

Proof. If $B=\bar{A}$, then $B$ is closed. Suppose $B$ is disconnected. Then there is a separation $B=U \cup V$ where $U, V$ are clopen in $B$. Hence they are closed in $X$. Since $A$ is connected, either $A \subset U$ or $A \subset V$ meaning that $\bar{A}=B \subset U$ or $B \subset V$. Hence we are done.
In the general case, suppose $B$ is disconnected and $B=U \cup V$. Then $A \subset U$ or $A \subset V$. Hence, $\bar{A} \subset \bar{U}$ or $\bar{A} \subset \bar{V}$ because $\bar{A}$ was proven to be connected. Suppose $\bar{A} \subset \bar{U}$. Then $B \subset \bar{U}$ which means that $\bar{U} \cap V \neq \phi$. But since $U, V$ are closed in $B, \bar{U} \cap B$ (which is the closure of $U$ in $B$ ) equals $U$ and hence $\bar{U} \cap V=\phi$ which is a contradiction.
(b) If $C_{i} \subset X$ are connected sets such that $C_{i} \cap C_{j} \neq \phi \forall i, j$, then $\cup_{i} C_{i}$ is connected.

Proof. Suppose $A \cup B=\cup_{i} C_{i}$ is a separation. Then by the above theorem, $C_{i} \subset A$ or $C_{i} \subset B$ for every $i$. By assumption there are $i, j$ so that $C_{i} \subset A$ and $C_{j} \subset B$. This is a contradiction.

## 2. Connectedness

Theorem : If $f: X \rightarrow Y$ is continuous and surjective, then $Y$ is connected if $X$ is so.
Proof. If $Y=U \cup V$ is a separation, then $f^{-1}(U), f^{-1}(V)$ are open. So, $X=f^{-1}(Y)=f^{-1}(U \cup V)=$ $f^{-1}(U) \cup f^{-1}(V)$. Now $f^{-1}(U) \cap f^{-1}(V)=f^{-1}(U \cap V)=\phi$ (because $f$ is onto).

Theorem : $X \times Y$ is connected if $X$ and $Y$ are so.
Corollary : $X_{1} \times X_{2} \ldots X_{n}$ is connected if $X_{i}$ are so. (This follows from induction.)

Proof. There are two proofs of this result :
(1) Fix a point $(a, b) \in X \times Y$. Now the "lines" $x \times Y$ and $X \times b$ intersect at $(x, b)$. Each of these is connected (because they are homeomorphic to $Y$ and $X$ respectively). By the above theorem, $T_{x}=x \times Y \cup X \times b$ is connected. Note that $(a, b) \in T_{x}$. Thus, $\cup_{x} T_{x}$ is connected. But this is $X \times Y$.
(2) Suppose $X=U \cup V$ is a separation. Then since $x \times Y \simeq Y$ is connected, $x \times Y \subset U$ or $x \times Y \subset V$ for all $x \in X$. Let $A_{x}$ be the set of all $x$ such that $x \times Y \subset U$ and likewise $B_{x}$ for $V$. Since $U$ is open, if $(x, y) \in U$, there is a neighbourhood $U_{x, y} \subset U$. Thus, $H_{x}=\cup_{y} U_{x, y} \subset U$ is open. Now $A_{x}=\pi_{1}\left(\cup_{x} H_{x}\right)$ and since $\pi_{1}$ is an open map, $A_{x}$ is open. Likewise, so is $B_{x}$. But $A_{x} \cap B_{x}=\phi$. This is a contradiction.

## 3. Interlude - Product and Box topologies

On infinite products $\Pi_{\alpha} X_{\alpha}$, there are two kinds of topologies -
The Box topology - It is generated by a basis of the form $\Pi_{\alpha} U_{\alpha}$ where $U_{\alpha} \subset X_{\alpha}$ are arbitrary open sets.
The Product topology (the more useful one) - Generated by a basis of the above form where all but finitely many $U_{\alpha}$ are equal to $X_{\alpha}$.

Theorem : If $f: A \rightarrow X=\Pi_{\alpha \in J} X_{\alpha}$ is a function $f(a)=\left(f_{\alpha}(a)\right)_{\alpha \in J}$ where $f_{\alpha}: A \rightarrow X_{\alpha}$ are functions, then if $X$ has the product topology, $f$ is continuous iff $f_{\alpha}$ are so. This is not necessarily the case if $X$ has the box topology.

Proof. Indeed, let $X=\mathbb{R}^{\omega}$. Then $\mathbb{R} \rightarrow X$ given by $t \rightarrow(t, t, \ldots)$ is not continuous w.r.t to the box topology. Take $(-1,1) \times\left(-\frac{1}{2}, \frac{1}{2}\right) \times\left(-\frac{1}{3}, \frac{1}{3}\right) \ldots$. The inverse image is the non-open set $\{0\}$.

The continuity w.r.t the product topology is left as an exercise.
Theorem : If $X_{\alpha}$ are connected, then $\Pi_{\alpha} X_{\alpha}$ is so in the product topology but not necessarily so in the box topology.

