
NOTES FOR 9 OCT (TUESDAY)

1. Recap

(1) Generalised the extreme value theorem.
(2) Proved the Lebesgue Number Lemma.
(3) Defined uniform continuity and proved that continuous functions on compact metric spaces

are uniformly so.
(4) Defined limit points and convergence of sequences.

2. Compactness

Now we give an interesting proof of the uncountability of R. For this, define an isolated point
x ∈ X to be one such that {x} is open in X.

Theorem 2.1. If X is a nonempty compact Hausdorff space and X has no isolated points, then X is uncountable.

Proof. There are two steps.

(1) Claim : Given any nonempty open set U ⊂ X and any point x ∈ X, there is a nonempty open
set V ⊂ U such that x < V̄.

Proof. Choose a point y ∈ U different from x. If x < U, then this obvious. If x ∈ U, use the
fact that it is not isolated. Now choose disjoint open sets W1,W2 about x, y respectively. The
set V = W2 ∩U is the desired set.
Indeed, its closure does not contain x : Suppose it did. Then x is a limit point of V, which
means that W1 ∩U intersects V - A contradiction. �

(2) Claim : Given f : Z+ → X, the function f is not surjective.

Proof. Let xn = f (n). Apply step 1 to U = X to get a smaller V1 such that V̄1 does not contain
x1. In general, given Vn−1, open and nonempty, choose Vn to be open and nonempty such
that Vn ⊂ Vn−1 and V̄n does not contain xn. By the generalised nested intervals theorem,
there exists x ∈ ∩V̄n. Of course x , xn for any n by construction. �

�

As a corollary, closed bounded intervals of R are uncountable. (Why does this mean that R is so
?)

3. Limit point compactness

A set X is defined to be limit point compact if every infinite subset of X has a limit point in X.

Lemma 3.1. Compactness implies limit point compactness (but not vice-versa in general).
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Proof. If A is an infinite subset of the compact set X and A does not have a limit point, then A
vacuously contains all its limit points. Hence A is closed. Furthermore, for every a ∈ A, there is an
open set Ua intersecting A in a alone. Thus Ua, X − A form an open cover of X. By compactness,
only finitely many Ua cover A which means that A is finite. Contradiction.
Here is a counterexample to the converse : Let Y = {a, b} with the indiscrete topology. The space
X = Z+ × Y is limit point compact. (In fact every nonempty subset of X has a limit point. Indeed,
if (n, a) is in the subset, then (n, b) is a limit point because every neighbourhood of (n, b) will contain
(n, a).) But X is of course not compact. The open cover {n} × Y has no finite subcover. �

Definition : A set X is said to be sequentially compact if every sequence has a convergent
subsequence.

Theorem 3.2. For metric spaces X, TFAE.
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.

Proof. 1⇒ 2 was done earlier.
2 ⇒ 3 : If A = {x1, . . . , xn, . . .} is a sequence, it has a limit point x if A is not finite. Now, consider
the open balls Bn = B(x, 1

n ). Let xn1 , x be a point in A ∩ B1. We claim that given xn1 , . . . , xnk such
that n1 < n2 < . . . and xni ∈ Bi, we can find an ni+1 > ni such that xni+1 ∈ Bi+1. This would imply that
xni → x.
Indeed, this claim follows from the following lemma.

Lemma 3.3. The ball Bi intersects A in infinitely many points.

Proof. Suppose Bi intersects A in only finitely many points a1, a2, . . . , ak. Choose an integer N >
maxi

1
d(x,ai)

. Then BN − {x} ∩ A = φ. This is a contradiction. �

3⇒ 1 : To prove this we need to reprove the Lebesgue number lemma for sequentially compact
sets. Indeed,

Lemma 3.4. If X is sequentially compact, and A is an open cover, then there exists a number δA > 0 (the
Lebesgue Number of the cover) such that every set with diameter < δA is in one of the elements ofA.

Proof. Suppose there is no such δ. Then for every n, there is a set An with diameter< 1
n not completely

contained in any element of An. Choose xn ∈ An. The sequence xn has a convergent subsequence
xni (convergin to x). Since x ∈ U for some U ∈ A and U is open, B(x, 1

N ) ⊂ U. Since xni → x, for all
i ≥M, we see that xni ∈ B(x, 1

N ). Hence for sufficiently large i, Ani ⊂ U, a contradiction. �

We need one more ingredient -

Lemma 3.5. If the metric space X is sequentially compact, for every ε > 0, there exists a finite cover by open
ε-balls.

Proof. Suppose not for some ε > 0. Then choose any x1. Since B1 = B(x1, ε) , X, choose x2 ∈ Bc
1. Since

B1∪B2 = B(x2, ε) , X, choose x3 not lying in these two and so on. Clearly d(xi, xn+1) ≥ ε∀ i = 1, . . . ,n.
Thus xi can have no convergent subsequence. A contradiction. �

Now we complete the proof of 3⇒ 1 (and hence the theorem). LetA be an open cover of X and
δ its Lebesgue Number. Let ε < δ. Cover X with finitely many ε-balls. Each ball is in some element
ofA. These finitely many elements cover X. �
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4. Countability axioms

The above criterion of compactness applies more generally. To this end, we need “countability”
axioms (so that we may sometimes check things on sequences).

(1) First countable : A space X is called first countable if for every point x ∈ X, there is a countable
collection of neighbourhoods Bx such that any neighbourhood of x contains an element of
Bx. (Every point has a countable basis.)

(2) Second countable : A space X is called second countable if there is a countable basis for its
topology. (That is a countable collection of open sets such that every open set is a union of
these open sets.) Obviously second countability implies first countability.

Examples and counterexamples :
(1) The co-countable topology onR is not first countable. Indeed, the intersection of a countable

neighbourhood local basis is still cocountable and hence open. Now delete one point (other
than x) from this intersection to get something that does not contain any local basis element.

(2) All metric spaces are first countable.
(3) The metric space RD with the discrete topology is first countable but not second countable.

Indeed, the singletons x} are uncountably many open sets (and hence the countable basis
cannot have all of them).

(4) R itself is second countable. Indeed, take (q− 1
n , q + 1

n ) for all rationals q and positive integers
n.

The point of first countability is that closedness can be checked using sequences.

Theorem 4.1. Let X be a topological space.
(1) Let A ⊂ X. If there is a sequence of points xi ∈ Aconverging to x, then x ∈ Ā. The converse holds if

X is first countable.
(2) Let f : X → Y. If f is continuous, for every xn → x, f (xn) → f (x). The converse holds if f is first

countable.

This will be given as a HW problem. Now both countability axioms behave well under the
subspace and countable product operations.

Theorem 4.2. A subspace of a first/second countable space is first/second countable. Likewise for countable
products.

Proof. We prove this for second countability. First countability is similar. If B is a countable basis
for X, then B∩A is a countable basis for A. (Why?) If Bi is a countable basis for Xi, then ΠUi where
all but finitely many Ui are Xi (and the rest are in Bi) is a countable basis for ΠiXi. �
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