NOTES FOR 9 OCT (TUESDAY)

1. Recap

- (1) Generalised the extreme value theorem.
- (2) Proved the Lebesgue Number Lemma.
- (3) Defined uniform continuity and proved that continuous functions on compact metric spaces are uniformly so.
- (4) Defined limit points and convergence of sequences.

2. Compactness

Now we give an interesting proof of the uncountability of \mathbb{R} . For this, define an isolated point $x \in X$ to be one such that $\{x\}$ is open in X.

Theorem 2.1. If X is a nonempty compact Hausdorff space and X has no isolated points, then X is uncountable.

Proof. There are two steps.

(1) Claim : Given any nonempty open set $U \subset X$ and any point $x \in X$, there is a nonempty open set $V \subset U$ such that $x \notin \overline{V}$.

Proof. Choose a point $y \in U$ different from x. If $x \notin U$, then this obvious. If $x \in U$, use the fact that it is not isolated. Now choose disjoint open sets W_1, W_2 about x, y respectively. The set $V = W_2 \cap U$ is the desired set.

Indeed, its closure does not contain x: Suppose it did. Then x is a limit point of V, which means that $W_1 \cap U$ intersects V - A contradiction.

(2) Claim : Given $f : \mathbb{Z}_+ \to X$, the function f is not surjective.

Proof. Let $x_n = f(n)$. Apply step 1 to U = X to get a smaller V_1 such that \bar{V}_1 does not contain x_1 . In general, given V_{n-1} , open and nonempty, choose V_n to be open and nonempty such that $V_n \subset V_{n-1}$ and \bar{V}_n does not contain x_n . By the generalised nested intervals theorem, there exists $x \in \cap \bar{V}_n$. Of course $x \neq x_n$ for any n by construction.

As a corollary, closed bounded intervals of \mathbb{R} are uncountable. (Why does this mean that \mathbb{R} is so ?)

3. Limit point compactness

A set X is defined to be limit point compact if every infinite subset of X has a limit point in X.

Lemma 3.1. Compactness implies limit point compactness (but not vice-versa in general).

Proof. If *A* is an infinite subset of the compact set *X* and *A* does not have a limit point, then *A* vacuously contains all its limit points. Hence *A* is closed. Furthermore, for every $a \in A$, there is an open set U_a intersecting *A* in *a* alone. Thus U_a , X - A form an open cover of *X*. By compactness, only finitely many U_a cover *A* which means that *A* is finite. Contradiction.

Here is a counterexample to the converse : Let $Y = \{a, b\}$ with the indiscrete topology. The space $X = \mathbb{Z}_+ \times Y$ is limit point compact. (In fact every nonempty subset of *X* has a limit point. Indeed, if (n, a) is in the subset, then (n, b) is a limit point because every neighbourhood of (n, b) will contain (n, a).) But *X* is of course not compact. The open cover $\{n\} \times Y$ has no finite subcover.

Definition : A set *X* is said to be sequentially compact if every sequence has a convergent subsequence.

Theorem 3.2. For metric spaces X, TFAE.

- (1) X is compact.
- (2) *X* is limit point compact.
- (3) *X* is sequentially compact.

Proof. $1 \Rightarrow 2$ was done earlier.

 $2 \Rightarrow 3$: If $A = \{x_1, \ldots, x_n, \ldots\}$ is a sequence, it has a limit point x if A is not finite. Now, consider the open balls $B_n = B(x, \frac{1}{n})$. Let $x_{n_1} \neq x$ be a point in $A \cap B_1$. We claim that given x_{n_1}, \ldots, x_{n_k} such that $n_1 < n_2 < \ldots$ and $x_{n_i} \in B_i$, we can find an $n_{i+1} > n_i$ such that $x_{n_{i+1}} \in B_{i+1}$. This would imply that $x_{n_i} \rightarrow x$.

Indeed, this claim follows from the following lemma.

Lemma 3.3. *The ball B_i intersects A in infinitely many points.*

Proof. Suppose B_i intersects A in only finitely many points $a_1, a_2, ..., a_k$. Choose an integer $N > \max_i \frac{1}{d(x,a_i)}$. Then $B_N - \{x\} \cap A = \phi$. This is a contradiction.

 $3 \Rightarrow 1$: To prove this we need to reprove the Lebesgue number lemma for sequentially compact sets. Indeed,

Lemma 3.4. If X is sequentially compact, and \mathcal{A} is an open cover, then there exists a number $\delta_{\mathcal{A}} > 0$ (the Lebesgue Number of the cover) such that every set with diameter $< \delta_{\mathcal{A}}$ is in one of the elements of \mathcal{A} .

Proof. Suppose there is no such δ . Then for every n, there is a set A_n with diameter $< \frac{1}{n}$ not completely contained in any element of \mathcal{A}_n . Choose $x_n \in A_n$. The sequence x_n has a convergent subsequence x_{n_i} (convergin to x). Since $x \in U$ for some $U \in \mathcal{A}$ and U is open, $B(x, \frac{1}{N}) \subset U$. Since $x_{n_i} \to x$, for all $i \ge M$, we see that $x_{n_i} \in B(x, \frac{1}{N})$. Hence for sufficiently large $i, A_{n_i} \subset U$, a contradiction.

We need one more ingredient -

Lemma 3.5. *If the metric space* X *is sequentially compact, for every* $\epsilon > 0$ *, there exists a finite cover by open* ϵ *-balls.*

Proof. Suppose not for some $\epsilon > 0$. Then choose any x_1 . Since $B_1 = B(x_1, \epsilon) \neq X$, choose $x_2 \in B_1^c$. Since $B_1 \cup B_2 = B(x_2, \epsilon) \neq X$, choose x_3 not lying in these two and so on. Clearly $d(x_i, x_n+1) \ge \epsilon \forall i = 1, ..., n$. Thus x_i can have no convergent subsequence. A contradiction.

Now we complete the proof of $3 \Rightarrow 1$ (and hence the theorem). Let \mathcal{A} be an open cover of X and δ its Lebesgue Number. Let $\epsilon < \delta$. Cover X with finitely many ϵ -balls. Each ball is in some element of \mathcal{A} . These finitely many elements cover X.

NOTES FOR 9 OCT (TUESDAY)

4. Countability axioms

The above criterion of compactness applies more generally. To this end, we need "countability" axioms (so that we may sometimes check things on sequences).

- (1) First countable : A space *X* is called first countable if for every point $x \in X$, there is a countable collection of neighbourhoods \mathcal{B}_x such that any neighbourhood of *x* contains an element of \mathcal{B}_x . (Every point has a countable basis.)
- (2) Second countable : A space *X* is called second countable if there is a countable basis for its topology. (That is a countable collection of open sets such that every open set is a union of these open sets.) Obviously second countability implies first countability.

Examples and counterexamples :

- (1) The co-countable topology on \mathbb{R} is not first countable. Indeed, the intersection of a countable neighbourhood local basis is still cocountable and hence open. Now delete one point (other than *x*) from this intersection to get something that does not contain any local basis element.
- (2) All metric spaces are first countable.
- (3) The metric space \mathbb{R}_D with the discrete topology is first countable but not second countable. Indeed, the singletons x} are uncountably many open sets (and hence the countable basis cannot have all of them).
- (4) \mathbb{R} itself is second countable. Indeed, take $(q \frac{1}{n}, q + \frac{1}{n})$ for all rationals q and positive integers n.

The point of first countability is that closedness can be checked using sequences.

Theorem 4.1. *Let X be a topological space.*

- (1) Let $A \subset X$. If there is a sequence of points $x_i \in A$ converging to x, then $x \in \overline{A}$. The converse holds if X is first countable.
- (2) Let $f : X \to Y$. If f is continuous, for every $x_n \to x$, $f(x_n) \to f(x)$. The converse holds if f is first countable.

This will be given as a HW problem. Now both countability axioms behave well under the subspace and countable product operations.

Theorem 4.2. A subspace of a first/second countable space is first/second countable. Likewise for countable products.

Proof. We prove this for second countability. First countability is similar. If \mathcal{B} is a countable basis for X, then $\mathcal{B} \cap A$ is a countable basis for A. (Why?) If \mathcal{B}_i is a countable basis for X_i , then ΠU_i where all but finitely many U_i are X_i (and the rest are in \mathcal{B}_i) is a countable basis for $\Pi_i X_i$.