
1 Recap
1. Bump functions

2. Einstein summation

3. Inverse function theorem

2 Implicit function theorem
Theorem 1 (Implicit function theorem (ImFT)). LetU ⊂ Rn×Rm be an open set consisting
of (x, y) where x ∈ Rn, y ∈ Rm. Let F : U → Rm be a Ck ( 1 ≤ k ≤ ∞) function. Suppose
F (a, b) = 0 and the matrix ∂F i

∂yj
(a, b) is invertible. Then there exist neighbourhoods a ∈ Va, b ∈

Wb such that Va ×Wb ⊂ U and whenever (x, y) ∈ Va ×Wb, F (x, y) = 0 ⇔ y = g(x) where
g : Va → Wb is a Ck function. Moreover, (Dxg)(a,b) = −(DyF )−1

(a,b)(DxF )(a,b).

Proof: Consider G(x, y) = (x, F (x, y)). Then G is Ck. Moreover, det(DG(a,b)) =
det((DyF )(a,b)) ̸= 0. Thus by the IFT, G is a local Ck-diffeo from Va ×Wb to G(Va ×Wb).
G−1(x, c) = (x, y) iff c = F (x, y). Thus, 0 = F (x, y) iff y = π2 ◦ G−1(x, 0), i.e., y is a Ck

function of x locally. The derivative formula follows from the chain rule.

The proof shows that in fact, locally, F (x, y) = c iff y = G(x, c) where G is a Ck

function. ( So in a sense, we can “change coordinates" in a Ck manner from (x, y) to
(x, c). In these new “coordinates", the level set F (x, y) = a, looks like c = a, i.e., we
“flatten" the level sets.)

3 An application of ImFT - Lagrange’s multipliers
Find the maximum value of f(x, y, z) = x+ y + z subject to x2 + y2 + z2 = 1.
Geometrically, it is easy to see that the answer is

√
3. How does one solve this us-

ing calculus alone? One possibility is to eliminate a variable using the constraint,
i.e., z(x, y) = ±

√
1− x2 − y2 where x2 + y2 ≤ 1. Thus f(x, y, z) = f(x, y, z(x, y)) =

x+ y ±
√

1− x2 − y2 over x2 + y2 ≤ 1. As in one variable calculus, one can look at the
interior and the boundary, and so on. This is too painful. More importantly, what if
the constraint was g(x, y, z) = xyz + ysin(xz

2) + z2 − 1 = 0? We cannot always explicitly
solve for one variable in terms of the others.

In general, suppose f : U ⊂ Rn → R is a smooth function, and a ∈ U is a point of
local extremum of f subject to g = 0 where g : U → R is a smooth function. Assume
that Dga ̸= 0.

Theorem 2 (Lagrange’s multipliers). In this case, there exists λ ∈ R such that Dfa = λDga.

Proof: WLog assume that ∂g
∂xn (a) ̸= 0. By the ImFT, locally, xn = h(x1, . . . , xn−1)

where h is smooth. Thus, k(x1, . . . , xn−1) = f(x1, . . . , xn−1, h(x1, . . .)) achieves a local
extremum at (a1, . . . , an−1). Thus, Dk(a1,...,an−1) = 0. Hence, ∂f

∂xi (a) +
∂f
∂xn (a)

∂h
∂xi (a) = 0



for all i. Since g(x1, . . . , xn−1, h) = 0, we see that ∂g
∂xi (a)+

∂g
∂xn (a)

∂h
∂xi (a) = 0 for all i. Thus

Dfa = λDga.
In the problem above, g = 0 is a compact closed set. Thus f does attain a global
maximum at some point a lying on g = 0. This point is a local extremum too. Indeed,
since Dga ̸= (2a1, 2a2, 2a2) ̸= (0, 0, 0) (why?) using ImFT, locally, we can solve for one
variable in a smooth manner in terms of the other variables. Since a is an interior
point of the domain, the function k in the proof above attains a local maximum.
Therefore, using Lagrange’s theorem Dfa = λDga. Hence (1, 1, 1) = λ(2a1, 2a2, 2a2).
Thus a1 = a2 = a3 = 1√

3
. At this point, the value of f is

√
3.

The example of Lagrange’s multipliers showed that it is easiest to optimise a “nice"
function over a “nice" constraint, i.e., the constraining set is a “surface-like" object. We
want to generalise this optimisation problem. To this end, we need to define “surface-
like" objects ( possibly with “boundary"). Our “surface-like" objects must hopefully be
metric spaces at the least. Moreover, to use things like the first derivative test, we need
to parametrise them locally using “coordinates". So these objects must locally look
like Rn, be Hausdorff and taking cue from Urysohn, second-countability is a natural
requirement. In fact, compact Hausdorff metric spaces are second countable. ( There
is a better theorem called the Nagata-Smirnov theorem that needs a weaker condition
called paracompactness (which is equivalent to second-countability if the manifold is
connected).)

4 Topological manifolds
A topological space M is said to be a topological manifold of dimension n if M is

1. Hausdorff.

2. second countable.

3. locally euclidean of dimension n, i.e., every point of M has a neighbourhood that
is homeomorphic to an open subset of Rn.

Hausdorffness and second countability are inherited by subspaces and products. If M
is connected, then automatically the dimension is constant. Topological manifolds are
metrizable using the Urysohn metrization theorem.

The explicit local homeomorphism ϕ : U ⊂ M → Û ⊂ Rn is called a coordinate
chart. If ϕ(p) = 0, then (ϕ, U) is said to be a coordinate chart centred at p. The
component functions ϕ(q) = (x1(q), x2(q), . . .) are simply called “local coordinates". If
Û is a ball, thenU is called a coordinate ball. It is fairly common to simply say “consider
coordinates in a neighbourhood around p". Without loss of generality, one can assume
that Û is all of Rn itself.

Examples, non-examples:
• Rn with the usual topology is a topological n-fold.

• If M is a topological n-fold, then so is any open subset V of M : Indeed V is
Hausdorff and second-countable. The restrictions of the coordinate charts give
coordinate charts for V .

2


	Recap
	Implicit function theorem
	An application of ImFT - Lagrange's multipliers
	Topological manifolds

