
MA 235 - Lecture 19

1 Recap
1. Diffeomorphism group acts transitively.

2. Vector fields as coordinate vector fields.

3. Lie brackets.

2 Cotangent bundle and one-forms
Recall that T ∗M is set theoretically, ∪pT

∗
pM . T ∗M is a vector bundle over M . Given a

coordinate chart (U, x), a local smoothly varying basis for T ∗M is given by ( ∂
∂xi )

∗. A
one-form is an element of T ∗

pM . A one-form field is a collection of smoothly varying
one-forms ( a smooth section of T ∗M ), i.e., ω : M → T ∗M such that ω(p) ∈ T ∗

pM and
around every point, there exists a coordinate chart (U, x) such that ω =

∑
i ωi(

∂
∂xi )

∗

where the functions ωi are smooth. As before, if ω is smooth in one chart, it is so in
all charts: ω̃i = ωj

∂xj

∂x̃i (why?). Moreover, given an atlas of Uα of M , and a collection of

functions ωi,α such that on Uα ∩Uβ , ωi,α = ωj,β
∂xj

β

∂xαi then there exists a smooth one-form
field ω on M whose coordinate representations are given by ωi,α (why?)

Given a smooth function f : M → R, what is its derivative? Sure, one way to
answer the question is to say it is f∗. However, f∗ can at best be thought of as a function
f∗ : TM → TR. On the other hand, if M = Rn, we can think of the derivative as
Df : Rn → Rn. So is there a function df : M → something ? The most naive way
to define it is take a chart (U, x) and take ( ∂f

∂x1 , . . .). However, when we change charts,
these vectors change to ( ∂f

∂xi
∂xi

∂x̃1 , . . .) which is exactly the way one-form fields change!
Thus df must be thought of as a one-form field! Invariantly speaking, df(Xp) := Xp(f).
Suppose xi are coordinates, then dxi( ∂

∂xj ) = δij , i.e., dxi = ( ∂
∂xi )

∗. Thus any one-form
field ω is ω = ωidx

i. Suppose γ is a smooth path, then df(γ′) = γ′(f) = (f ◦ γ)′.
Thus in some sense, df is the “right" analogue of Newton’s infinitesimals. d(fg) =
dfg + fdg, d(f + g) = df + dg, d(f/g) = dfg−fdg

g2
, d(c) = 0.

Moreover, if df ≡ 0 on a connected manifold, f is constant on the manifold: Indeed,
let f(p) = c for some p. Then the set of all q ∈ M such that f(q) = p is non-empty
and closed. It is also open: on a coordinate neighbourhood of q, df = 0 iff ∂f

∂xi = 0 and
hence f = c on that neighbourhood. By connectedness we are done.
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Just as we can pushforward tangent vectors (F∗)p : TpM → TF (p)N , the dual map
can be used to pullback cotangent vectors/one-forms: (F ∗)F (p) : T

∗
F (p)N → T ∗

pM given
by (F ∗)F (p)(ωF (p))(Xp) = ωF (p)((F∗)pXp). In fact, while we cannot pushforward vector
fields, we can always pullback one-form fields: (F ∗)ω(p)(Xp) = ωF (p)((F∗)pXp). In
coordinates, F ∗ (dxi)( ∂

∂xj ) = dxi(∂F
k

∂xj
∂

∂xk ) =
∂F i

∂xj , i.e, F ∗(dxi) = dF i = dF i. For ease of
notation, if we denote F ∗f = f ◦ F , then F ∗(ωidx

i) = ωi ◦ FdF i = F ∗ωidF
∗xi. As an

example, if y = F (x) = x2 and ω = 3y4dy, then F ∗ ω = 3(x2)42xdx.

3 Tensors
If we want to measure infinitesimal distances on a manifold, we would need a “smoothly
varying inner product". How does one define such an object? In physics, if we press
an elastic body, how will it react? To know that, we would need to know a linear
function that takes the normal to a surface and produces the “stress vector" across the
surface. ( The resulting linear map/matrix is called the stress tensor.) The area of a
parallelogram is a⃗ × b⃗. The volume of a parallelopiped is (⃗a × b⃗).⃗c. What about in
higher dimensions? On a related note, how can one generalise the “cross product" to
higher dimensions?
A common thread in all the questions above is the notion of a multilinear map or simply
an object that has more than one index (like Aijk...). More so, we need a “smoothly
varying family" of multilinear maps. Presumably, it corresponds to the section of some
vector bundle.
Let Vi,W be vector spaces (over the same field). Then T : V1 × . . . Vk → W is called
multilinear if it is linear separately in each variable.
Examples: Dot product in Rn, Cross product, Determinant, Lie bracket, etc.
Non-example: T : R2 → R given by T (x, y) = x + y is linear but not multilinear!
T (x, y) = xy is multilinear but not linear.
Another example: Let ω, η ∈ V ∗. Consider ω ⊗ η : V × V → R given by ω ⊗ η(v, w) =
ω(v)η(w). This is a multilinear map. This example can be generalised to define the
tensor product of arbitrary multilinear functionals. It is easily seen to be associative.
Recursively, we can talk about ω1 ⊗ ω2 . . .. Likewise, since V = V ∗∗ (in f.d), we can talk
about v ⊗ w ⊗ . . ..
Theorem: Let ni = dim(Vi). The dimension of the space Mult(V1, . . . , Vk;R) is n1n2 . . .
and a basis is (ei11 )⊗ (ei22 ) . . ..
Proof: This set is linearly independent: Indeed, if ci1i2...(ei11 )⊗ (ei22 ) . . . = 0, then acting
on (e1,j1 , e2,j2 , . . .) we get cj1j2... = 0. This is true for all j1, j2 . . .. Hence we are done.
It spans the space: Let F be a multilinear functional. Define Fi1i2... = F (e1,i1 , e2,i2 , . . .).
Now considerω = Fi1i2...(e

i1
1 )⊗(ei22 ) . . .. Note that (ω−F )(v1, v2, . . .) = (ω−F )(vj11 ej1 , . . .) =

vj11 vj22 . . . (ω − F )(e1,j1 , e2,j2 , . . .) = 0.

Let V1, V2 be vector spaces. We can bring multilinear maps into the framework of
linear maps. Basically, we want to create a vector space V1 ⊗ V2 formed by “formal"
linear combinations of things of the type v1 ⊗ v2.
Theorem: Suppose there exists a vector space (called the tensor product of Vi) V1 ⊗ V2

and a multilinear map π : V1×V2 → V1⊗V2 with the property that given any multilinear

2



map T : V1×V2 → W , there is a unique linear map T̃ : V1⊗V2 → W such that T = T̃ ◦π.
Then any other vector space satisfying this universal property is isomorphic to V1 ⊗ V2

(with the isomorphism preserving the universal property).
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