
MA 235 - Lecture 20

1 Recap
1. Differential of a function, pullbacks of 1-forms.

2. Tensors, dimension of tensors.

2 Tensors
Theorem: Suppose there exists a vector space (called the tensor product of Vi) V1 ⊗ V2

and a multilinear map π : V1×V2 → V1⊗V2 with the property that given any multilinear
map T : V1×V2 → W , there is a unique linear map T̃ : V1⊗V2 → W such that T = T̃ ◦π.
Then any other vector space satisfying this universal property is isomorphic to V1 ⊗ V2

(with the isomorphism preserving the universal property).
Proof: Suppose (V ′, π′) is another such space. Then consider the map π̃′ : V1⊗V2 → V ′

induced from π′. Likewise, we have π̃ : V ′ → V1 ⊗ V2. These two are inverses of each
other and hence give the desired isomorphism (why?).
We can prove that tensor products (if they exist) are associative (using the univer-
sal property). We can then take arbitrary (finite) number of tensor products. We
need to manage to construct one such space. The idea is to take the free vector
space F (S = V1 × V2 × . . .) defined as the set of all formal linear combinations
of elements of S, i.e., f : S → R such that f(s) = 0 for all but finitely many
s. Define a subspace R generated by the set (v1, v2, . . . , avi, . . .) − a(v1, v2, . . .) and
(v1, v2, . . . , vi + v′i, . . .)− (v1, . . . , vi, . . .)− (v1, . . . , v

′
i, . . .). The quotient space is denoted

as V1 ⊗ V2 . . . and the projection map by π. π(v1, v2, . . .) is denoted by v1 ⊗ v2 . . .. One
can prove that indeed this satisfies the universal property.
One can also prove that if ei,j are bases for Vi, then e1,j1 ⊗ e2,j2 . . . is a basis for the
tensor product. Moreover, there is a canonical isomorphism between V ∗

1 ⊗ . . . and
Mult(V1, V2, . . . ;R). Likewise (in finite-dimensions), there is a canonical isomorphism
between V1 ⊗ . . . and Mult(V ∗

1 , V
∗
2 , . . . ;R).

A covariant tensor of type-l on V is an element of V ∗ ⊗ V ∗ ⊗ . . . (l times). It can be
thought of as corresponding to a multilinear map from V ×V . . . to R. A contravariant
tensor of type-k on V is an element of V ⊗ V ⊗ . . . (k times). A (k, l)-mixed tensor is an
element of V ⊗ V . . . ( k times) ⊗ V ∗ . . . ( l times). ( By convention, T 0,0 = R.) In terms
of indices, a (k, l) tensor has k upstairs indices and l downstairs indices.
Example: Given a f.dV , andT : V → V , it can be thought of as a mixed (1, 1)-tensor, i.e.,
as an element of V ⊗ V ∗ as follows: Define T : V ∗ × V → R as T (ω, v) = ω(T (v)). This
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is a multilinear map and hence corresponds to a unique linear functional on V ∗ ⊗ V ,
i.e., to an element of V ⊗ V ∗. In fact, the map T → T is a linear isomorphism from
L(V, V ) to V ⊗ V ∗ (why?)
We will be interested in covariant tensors in this course. In fact, in elements of
T ∗
pM ⊗ T ∗

pM . . .. An inner product on V is an example of a covariant 2-tensor, i.e., an
element of V ∗ ⊗ V ∗. Indeed, it is a multilinear functional on V × V . In fact, if e1, . . . , en
is an ordered basis of V and e1 . . . is the dual basis, then ⟨, ⟩ = ⟨ei, ej⟩ei⊗ ej = gije

i⊗ ej .
This example is very special. It is symmetric, i.e., ⟨v, w⟩ = ⟨w, v⟩. On the other hand,
suppose v1, . . . , vn are n elements of Rn forming the columns of a matrix A, then det(A)
is a multilinear map from Rn × . . . to R, i.e., a covariant tensor of type n. However, this
one is antisymmetric/alternating, i.e., if you permute the elements, you pick up the
sign of the permutation.

Def: A symmetric covariant tensor is one that is unchanged under a transposition of
two of its entries ( and hence under any permutation). An alternating/antisymmetric
covariant tensor changes sign under a transposition ( and hence picks up the sign of
the permutation).
Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: A(v, w) = vTAw.
Now A = A+AT

2
+ A−AT

2
, i.e., every matrix is a sum of symmetric and antisymmetric

matrices.
Motivated by this construction, define the symmetrisation of a k-covariant tensor α
as Sym(α)(v1, . . . , vk) =

1
k!

∑
σ∈Sk

α(vσ(1), . . .). It is symmetric and Sym(α) = α iff α is
symmetric.
The antisymmetrisation/alternation is defined asAlt(α)((v1, . . . , vk) = 1

k!

∑
σ∈Sk

sgn(σ)α(vσ(1), . . .).
It is alternating and Alt(α) = α iff α is alternating.

3 Tensor bundles and tensor fields
Let T k,l

p M := TpM ⊗ TpM . . . TpM ⊗ T ∗
pM ⊗ T ∗

pM . . .. The disjoint union T k,lM =
∪p∈MT k,l

p M can be given a vector bundle structure over M . This bundle is called
the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth
(k, l)-tensor fields, i.e., smoothly varying tensor fields. Indeed, consider the obvious
projection map to M . Each fibre is a vector space. Suppose (U, x) is a coordinate chart.
Consider the basis ∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ dxjl . This basis gives a local trivialisation

π−1(U) → U ×Rn(k+l). We declare the topology and manifold structure such that these
local trivialisations are diffeomorphisms (as usual). As a consequence, a tensor field is
smooth iff the coefficients in this trivialisation are smooth functions.

An example of a covariant symmetric 2-tensor field is a Riemannian metric: A
Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field
that defines an inner product on every tangent space.
Example: The Euclidean metric g = (dx1)⊗(dx1)+. . .+(dxn)⊗(dxn) onRn. A metric on
(0,∞)× (0, 2π): g = dr⊗dr+ r2dθ⊗dθ. Note that this metric is basically the Euclidean
metric on R2 but in different coordinates! This raises a question: Is every metric on
Rn secretly the Euclidean metric locally in some coordinate chart? The answer is NO.
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There is an obstruction called the Riemann curvature tensor.
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