MA 235 - Lecture 20

1 Recap

1. Differential of a function, pullbacks of 1-forms.

2. Tensors, dimension of tensors.

2 Tensors

Theorem: Suppose there exists a vector space (called the tensor product of V;) V; & V4
and a multilinear map 7 : V; x V5, — Vi ®V; with the property that given any multilinear
map 7' : V; x Vo — W, there is a unique linear map 1" : V; ® Vo, — W such thatT" = Tor.
Then any other vector space satisfying this universal property is isomorphic to V; ® V5
(with the isomorphism preserving the universal property).

Proof: Suppose (V', 7') is another such space. Then consider the map 7/ : Vi @ Vo — V”
induced from 7’. Likewise, we have 7 : V! — V] ® V4. These two are inverses of each
other and hence give the desired isomorphism (why?). O
We can prove that tensor products (if they exist) are associative (using the univer-
sal property). We can then take arbitrary (finite) number of tensor products. We
need to manage to construct one such space. The idea is to take the free vector

space F(S = Vi x V5 x ...) defined as the set of all formal linear combinations
of elements of S, ie., f : S — R such that f(s) = 0 for all but finitely many
s. Define a subspace R generated by the set (vy,vs,...,av;,...) — a(vq,v9,...) and
(v1,v2, ..., 0+, ...) — (v1,...,0;,...) — (v1,...,v.,...). The quotient space is denoted

as V1 ® V4 ... and the projection map by 7. 7(vy,v9,...) is denoted by v; ® vy .... One
can prove that indeed this satisfies the universal property.

One can also prove that if e, ; are bases for V;, then e; j, ® ey, ... is a basis for the
tensor product. Moreover, there is a canonical isomorphism between V;* ® ... and
Mult(Vh, Vs, .. .;R). Likewise (in finite-dimensions), there is a canonical isomorphism
between V; @ ... and Mult(V}", V5, .. ;R).

A covariant tensor of type-/ on V is an element of V* ® V* ® ... (I times). It can be
thought of as corresponding to a multilinear map from V' x V... to R. A contravariant
tensor of type-k on V is an elementof V@V ® ... (k times). A (k,[)-mixed tensor is an
elementof V@V ...(ktimes) ® V*...(ltimes). (By convention, 7°% = R.) In terms
of indices, a (k, ) tensor has k upstairs indices and | downstairs indices.

Example: Givenaf.dV,andT : V — V,itcanbe thought of as a mixed (1, 1)-tensor, i.e.,
as an element of V' ® V* as follows: Define 7 : V* x V — Ras T (w,v) = w(T'(v)). This



is a multilinear map and hence corresponds to a unique linear functional on V* ® V,
i.e., to an element of V ® V*. In fact, the map 7" — 7 is a linear isomorphism from
L(V,V)toV ® V* (why?)

We will be interested in covariant tensors in this course. In fact, in elements of
TyM ®TyM.... Aninner product on V' is an example of a covariant 2-tensor, i.e., an
element of V* ® V*. Indeed, it is a multilinear functional on V' x V. In fact, if ey, ... , e,
is an ordered basis of V and ¢’ . . . is the dual basis, then (,) = (¢;,¢;)e' @ e/ = g;;e' @ €.
This example is very special. It is symmetric, i.e., (v, w) = (w,v). On the other hand,
suppose vy, . . ., v, are n elements of R” forming the columns of a matrix A, then det(A)
is a multilinear map from R" x ... to R, i.e., a covariant tensor of type n. However, this
one is antisymmetric/alternating, i.e., if you permute the elements, you pick up the
sign of the permutation.

Def: A symmetric covariant tensor is one that is unchanged under a transposition of
two of its entries ( and hence under any permutation). An alternating/antisymmetric
covariant tensor changes sign under a transposition ( and hence picks up the sign of
the permutation).

Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: A(v, w) = v’ Aw.
Now A = # + A_QAT, i.e., every matrix is a sum of symmetric and antisymmetric
matrices.

Motivated by this construction, define the symmetrisation of a k-covariant tensor «

as Sym(a)(vy, ..., vk) = 51 Yopes, UVs(1);---)- It is symmetric and Sym(a) = o iff o is
symmetric.
The antisymmetrisation/alternation is defined as Alt(a)((v1, . .., vk) = 1 X geg, S91(0)(Vs(1); - - -)-

It is alternating and Alt(«) = « iff « is alternating.

3 Tensor bundles and tensor fields

Let TH'M = T,M @ T,M ... T,M @ T:M @ T;M.... The disjoint union T"'M =
UpenrT)' M can be given a vector bundle structure over M. This bundle is called
the bundle of mixed (k, [)-tensors. Smooth sections of this bundle are called smooth
(k,l)-tensor fields, i.e., smoothly varying tensor fields. Indeed, consider the obvious
projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart.
Consider the basis ag?il ®...® 83% ® dz?* ® da?'. This basis gives a local trivialisation
71 (U) = U x R"*+1)_ We declare the topology and manifold structure such that these
local trivialisations are diffeomorphisms (as usual). As a consequence, a tensor field is

smooth iff the coefficients in this trivialisation are smooth functions.

An example of a covariant symmetric 2-tensor field is a Riemannian metric: A
Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field
that defines an inner product on every tangent space.

Example: The Euclidean metric g = (dz')®(dz')+. ..+ (dz")®(dz™) on R™. A metric on
(0,00) % (0,27): g = dr ® dr +1r*df ® df. Note that this metric is basically the Euclidean
metric on R? but in different coordinates! This raises a question: Is every metric on
R" secretly the Euclidean metric locally in some coordinate chart? The answer is NO.



There is an obstruction called the Riemann curvature tensor.
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