
MA 235 - Lecture 5

1 Recap
1. Implicit function theorem.

2. Lagrange’s multipliers.

3. Topological manifolds (definition and a couple of examples).

2 Topological manifolds and smooth manifolds
Examples, non-examples:

• Let U ⊂ Rn be open and let f : U → R be continuous. The graph M of f is
(x, f(x)) ⊂ Rn+1 with the subspace topology. HenceM is Hausdorff and second-
countable. Consider ϕ(x, f(x)) = x to U . This map is a bĳection. It is continuous.
Its inverse is ϕ−1(x) = (x, f(x)) which is continuous. Hence M is a topological
manifold that is homeomorphic to U . The chart ϕ is called “graph coordinates".

• Unfortunately, closed subsets of even Rn need not be topological manifolds: The
letter X considered as a subspace of R2 cannot be endowed with a topological
manifold structure (why?)

Recall that we want to do optimisation using calculus. To this end, we need to know
what a differentiable function f : M → R means. There is a naive way to define it.
Simply use charts. f is diff iff f ◦ ϕ−1 is so. Unfortunately, if we choose two different
charts, then a function f can fail to be differentiable: Consider ϕ : R2 → R2 given by
(u, v) → (u1/3, v1/3) and f(x, y) = x. So change of charts must preserve differentiability
or Ck-ness or smoothness or real-analyticity or anything else we feel like.

Definition: A smooth atlas for a topological manifold M is a collection of charts
(ϕ, Uα) such that ∪αUα = M and they are smoothly compatible with one another, i.e.,
if (ψ,U) and (ϕ, V ) are charts, then ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a smooth diffeo-
morphism. These maps are called transition maps.
Here is an odd thing for a smooth atlas: We would like to define a function f :M → R
to be smooth if f ◦ ϕ−1 is smooth for every chart in the atlas. However, if we add more
smoothly compatible charts, that does not change the smoothness or the lack thereof
of functions! To remedy this odd point, we define a maximal atlas to be an atlas that is
not properly contained in a larger smooth atlas.
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Def: A smooth structure on a topological manifoldM is simply a maximal smooth atlas.
A smooth manifold (M,A) is a topological manifold M equipped with a maximal
smooth atlas A.
As we shall see, a given topological manifold can have ostensibly different smooth
structures ( which are often “secretly" the same in disguise). Some topological mani-
folds ( first found in 1960) can have no smooth structures at all!
Remark: One can also talk ofCk structures, real-analytic structures, complex structures,
etc.

Theorem 1 (Forget about the adjective ‘maximal’ theorem). Let M be a topological man-
ifold. Every smooth atlas A is contained in a unique maximal smooth atlas, called the smooth
structure determined by A. Two smooth atlases for M determine the same smooth structure iff
their union is a smooth atlas.

Proof. Let A be the union of all charts that are smoothly compatible with A. This beast is
a smooth atlas compatible with A: Indeed, if (ϕ, U), (ψ, V ) are in A, then let p ∈ U ∩ V .
There is a chart (η,W ) ∈ A that is smoothly compatible with (ϕ, U) and with (ψ, V ).
Thus ϕ ◦ ψ−1 and ψ ◦ ϕ−1 when restricted to W ∩ U ∩ V is smooth. Thus (ϕ, U), (ψ, V )
are smoothly compatible with each other.
Now A is also maximal: Indeed, if there is any chart that is smoothly compatible with
every element of A such that it is not contained in A, then we have a contradiction.
If B is any other maximal smooth atlas containing A, it is contained in A. Since B is
maximal, B = A.
If the union is a smooth atlas, then the unique maximal atlas containing the union
contains each and hence we are done. If they determine the same smooth structure,
then the maximal atlases are the same and hence their union is a smooth atlas.

Just as in the case of topological manifolds, one talk of smooth coordinate balls, i.e.,
a member (ϕ, U) of the maximal smooth atlas, such that ϕ(U) is a ball in Rn. ( By the
way, note that the closed coordinate balls are compact.)
Proposition: A smooth manifold M has a countable basis of smooth coordinate balls.
Proof: Firstly, every open cover Vα of M has a countable sub-cover: Consider a count-
able basis Wi. Let Vαj

be the countable subcollection such that Vαj
contains some basis

element Wij . We claim that Vαj
cover M . Indeed, given any p ∈M , p ∈ Vβ for some Vβ .

Since Wi form a basis, p ∈ Wp ⊂ Vβ . Thus Vβ = Vαi
for some i.

Secondly, using the above lemma, there is a countable cover of smoothly compatible
coordinate charts (ϕi, Ui). Simply choose rational points and rational balls around
them.

Recall that when we use polar coordinates (r, θ), we simply write p = (r, θ) or
p = (x, y) depending on our convenience. ( Technically, we are using two different
R2s here.) Akin to that, in practice, one omits reference to ϕ, i.e., one says simply,
“p = (x1, . . . , xn) in local coordinates". One identifies U with ϕ(U) ⊂ Rn and abuses
notation, i.e., one thinks of a manifold as a bunch of open subsets of (different) Rns
with some “gluing" by transition functions ( we will make this precise later on).
When we want to define objects on manifolds like say smooth functions to R, we must
make sure that our definitions are independent of choice of coordinates. There are two
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ways of doing this: Either don’t refer to coordinates at all while defining (the math-
ematician’s way), or define using coordinates but make sure the “correct" results are
obtained if we change coordinates (the physicist’s way).

Examples of smooth manifolds:

• A countable discrete space ( 0 dimensional).

• Rn with the usual topology and usual chart.

• Open subsets of smooth manifolds. ( As before, closed subsets need not be
smooth (or for that matter, even topological) manifolds.

• Products of smooth manifolds M1 × M2 . . . × Mk: Indeed, they are Hausdorff
and second-countable. Suppose (ϕα,i, Uα,i) are smooth atlases on Mi, then the
“product chart" gives a smooth atlas on the product ( that induces a unique
smooth structure).

• Another smooth structure on R: U = R, ϕ : U → R is ϕ(u) = u1/3. This is a
homeomorphism. Unfortunately, this chart is not smoothly compatible with the
usual ψ(u) = u because ϕ ◦ ψ−1(x) = x1/3 which is not smooth. So

• Finite-dimensonal normed vector spaces. ( a choice of a basis identifies such an
object with Rn. A different basis gives a smoothly compatible chart.)

• Graphs of smooth functions f : U ⊂ Rn → R.

• Matrices M(m× n,R) = Rmn and M(m× n,C) = R2mn.

• GL(n,R): det(A) ̸= 0 is an open subset and hence a manifold. ( Likewise,
GL(n,C) is also a manifold.)

• Matrices of full rank: Again, an open subset of M(m× n).
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