
MA 235 - Lecture 6

1 Recap
1. Definition of smooth manifolds

2. “Forget the adjective maximal" theorem.

3. Examples.

2 Smooth manifolds
Examples (cont’d...)

1. Spheres Sn: Consider
∑

i(y
i)2 = 1 as a subspace of Rn+1. It is compact and

Hausdorff. Here is a smooth atlas: Let U+
i be the open set where yi > 0 and

likewise for U−
i . These sets cover the sphere. Now U±

i ∩Sn are graphs and hence
possess graph coordinates: ϕ±

i (y) = (y1, y2, . . . , yi−1, yi+1, . . . , yn). hecking that
transition maps are diffeomorphisms is an exercise.

2. Level sets: The example of spheres can be generalised. Let U ⊂ Rk be open and
f : U → R be smooth. Suppose ∇f(a) ̸= 0 whenever f(a) = 0. Then we claim
that f−1(0) with the subspace topology can be made into a smooth manifold
(HW).

3. Tori: S1 × S1 . . . S1 is a torus.

4. Real projective spaces RPn: Consider the set of lines through the origin in Rn+1.
Every line can be given by a non-zero vector (upto scaling). Thus we have the
quotient RPn = Rn+1−0

X∼λX | λ∈R+
. Endow this set with the quotient topology. It

is Hausdorff (why?) Cover it with Ui = {[X]|X i ̸= 0} ( why are Ui open?).
Consider ϕi : Ui → Rn given by ϕi([X]) = (X

0

Xi ,
X1

Xi ,
Xi−1

Xi ,
Xi+1

Xi , . . .). These ϕi are
homeomorphisms. Hence RPn is second-countable. The transition maps are
smooth (why?) RPn is also compact (why?)

3 Topological and smooth manifolds-with-boundary
We can have constrained optimisation problems where the the domain has a “bound-
ary". We would want the boundary to also be “smooth". (So that we inductively

1



apply our methods.) Just as manifolds are locally modelled on Rn, near the boundary,
manifolds-with-boundary must be locally modelled on the closed upper half-space
Hn ⊂ Rn (xn ≥ 0.) When n > 0, the topological boundary ∂Hn is xn = 0, which is
basically Rn−1, i.e., we would want our boundaries to be manifolds themselves (with-
out boundary). An n-dimensional topological manifold-with-boundary is a Hausdorff
second-countable space that is either locally homeomorphic to an open subset of Rn

( interior points and interior charts) or to a relatively open subset of Hn (boundary
charts). The set of points sent to ∂Hn is called the boundary. It turns out (using
invariance of domain) that Int(M) ∩ ∂M = ϕ (why?).

A smooth atlas on a topological manifold-with-boundary is a collection of charts
(ϕα, Uα) which are either interior or boundary charts such that the transition maps
between any two are smooth. ( A smooth function on an arbitrary set is one that can
be extended to a smooth function on a neighbourhood of the set.) A smooth manifold-
with-boundary is a topological manifold-with-boundary equipped with a maximal
smooth atlas. Unfortunately, the product of two smooth manifolds-with-boundary is
not considered a smooth manifold-with-boundary (it has corners). If there is a smooth
chart ϕ : U → ϕ(U) ⊂ Hn such that ϕ(p) ∈ ∂Hn for some p ∈ U , then this is true
for any chart containing p: If not, a neighbourhood of a boundary point of Hn can be
diffeomorphed into an open subset of Rn. This is a contradiction (why?)

4 Smooth functions on manifolds
Let M be a smooth manifold (with or without boundary). A function f : M → R
is said to be smooth at p ∈ M if there exists a chart (ϕ, U) with p ∈ U such that
f̂ = f ◦ ϕ−1 : Û ⊂ Rn{/}Hn → R is a smooth function at ϕ(p).
Immediately, we need to answer some obvious questions.
Proposition: Smoothness at p does not depend on the chart used and is a local property,
i.e., suppose W is a neighbourhood of p; then f is smooth at p iff f restricted to W is
smooth at p.
Proof: Firstly, locality holds for functions from open subsets of Rn{/}Hn to Rm (as we
shall see later). Now if (ψ, V ) (with p ∈ U ∩ V ) is another chart, then on the open set
ψ(U ∩ V ), f ◦ ψ−1 = f ◦ ϕ−1 ◦ (ϕ ◦ ψ−1) is smooth at ψ(p) because it is a composition
(and by locality). As for locality on manifolds, suppose f is smooth at p. Consider the
chart (ϕ,W ∩U). f ◦ϕ−1 : ϕ(W ∩U) → R is smooth. But that implies by definition that
f restricted to W is smooth at p. The other direction is an exercise.
Proposition: Smooth functions are continuous.
Proof: f ◦ ϕ−1 : Û → R is smooth and hence continuous at ϕ(p). Now f = f ◦ ϕ−1 ◦ ϕ
which is continuous at p.
A convention: Just as mentioned earlier, it is common practice to identify U with Û .
Hence f with f̂ , i.e., the local representation of the function with the function itself. For
instance, if f(x, y) = x2 + y2 on R2, one commonly writes f(r, θ) = r2 (whereas this is
actually a different function).
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