MA 235 - Lecture 21

1 Recap

- 1. Tensor products of vector spaces and relationship with $Mult(V_1 \times V_2, \ldots, \mathbb{R})$.
- 2. Symmetric and skew-symmetric tensors. Symmetrisation and alternation.
- 3. Tensor bundles and tensor fields. Definition of a Riemannian metric.

2 Tensor bundles and tensor fields

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating.

Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG, then firstly, $\alpha(v_1, \ldots, v_k) = 0$ whenever two of the v_i coincide (why?) and hence $\alpha(c_1v_1, \ldots, v_k) = \alpha(c_1v_1 + c_2v_2 + \ldots, v_2, \ldots) = 0$ (why?) Thus $\alpha(v_1, \ldots, v_k) = 0$ whenever they are linearly dependent.

Let *V* be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for *V*^{*}. Given a multi-index $I = (i_1, \ldots, i_k)$, consider the *k*-covariant tensor $\epsilon^I(v_1, \ldots, v_k) = \left(\begin{array}{c} \epsilon^{i_1}(v_1) \\ \epsilon^{i_1}(v_1) \end{array} \right) \left(\begin{array}{c} e^{i_1}(v_1) \\ \epsilon^{i_1}(v_2) \end{array} \right) \left(\begin{array}{c} e^{i_1}(v_1) \\ \epsilon^{i_1}(v_2) \end{array} \right)$

$$\det \begin{pmatrix} \epsilon^{i_1}(v_1) & \dots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \dots & \epsilon^{i_k}(v_k) \end{pmatrix} = \begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_k} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}, \text{ that is, } \epsilon^I(v_1, \dots, v_k) \text{ is a minor of a}$$

matrix. These ϵ^{I} are called elementary alternating *k*-tensors or elementary *k*-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on). For future use, if I, J are multiindices of size *k*, then we define δ_{J}^{I} as a determinant of a matrix $A_{ab} = (\delta)_{jb}^{i_{a}}$. $\delta_{J}^{I} = sgn(\sigma)$ if $J = I_{\sigma}$ and no repetitions and 0 otherwise.

Properties:

- If *I* has a repeated index, $\epsilon^I = 0$ (why?).
- If $J = I_{\sigma}$, then $\epsilon^{I} = sgn(\sigma)\epsilon^{J}$ (why?).
- $\epsilon^I(e_{j_1},\ldots,e_{j_k})=\delta^I_J$ (why?).

Consider the vector space $\Lambda^k(V^*)$ - the space of alternating covariant *k*-tensors/*k*-forms on *V*. We want a basis of this space. Consider "increasing" multiindices, $i_1 < i_2 < \ldots$ For increasing-index-summation, we put a prime sign.

Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \leq n$ and 0 otherwise. Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume $k \leq n$. Firstly, the ϵ^I are linearly independent: If $\sum' c_I \epsilon^I = 0$, then consider $0 = \sum' c_I \epsilon^I (e_{j_1}, e_{j_2}, \ldots) = \sum' c_I \delta^I_J = c_J$ (why?) Secondly, they span the space: Let $\alpha \in \Lambda^k$. Then let $\alpha_I = \alpha(e_{i_1}, \ldots)$. Thus $(\alpha - \sum' \alpha_I \epsilon^I)(e_{j_1}, \ldots, e_{j_n}) = 0$ (why?) and hence we are done (why?).

If *V* is an *n*-dimensional v. space, then elements of $\Lambda^n(V^*)$ are called "top forms" (because there are no forms beyond them). Let $T : V \to V$ be a linear map and ω be a top form.

Then $\omega(Tv_1, \ldots, Tv_n) = \det(T)\omega(v_1, \ldots, v_n)$. Proof: Let e_1, \ldots, e_n be a basis of V. We note that $\omega = c\epsilon^{12\ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_i = e_i$. The RHS is $\det(T)c$. The LHS is $c\det(Te_1, \ldots, Te_n) = c\det(T)$ (why?). Hence we are done.

3 Wedge product

How does one generalise the cross product? Why must one generalise it? Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.

How: Naively, $(a \times b)_{ij} = a_i b_j - a_j b_i$, i.e., it is a 2-form! So perhaps we can talk of the "cross product" (we shall call it the wedge product) of a *k*-form with an *l*-form to get $\omega \wedge \eta$ - a (k + l)-form.

Def: Suppose $\omega \in \Lambda^k(V^*)$ and $\eta \in \Lambda^l(V^*)$, then $\omega \wedge \eta := \frac{(k+l)!}{k!l!} Alt(\omega \otimes \eta)$. So for instance, $\epsilon^1 \wedge \epsilon^2 = \epsilon^1 \otimes \epsilon^2 - \epsilon^2 \otimes \epsilon^1 = \epsilon^{1,2}$. So $\epsilon^1 \wedge \epsilon^2(v, w) = v^1 w^2 - v^2 w^1$. Why the weird numerical factor? $(\epsilon^1 \wedge \epsilon^2) \wedge \epsilon^3 = \frac{3!}{2!1!} Alt((\epsilon^1 \otimes \epsilon^2 - \epsilon^2 \otimes \epsilon^1) \otimes \epsilon^3) = 3Alt(\epsilon^1 \otimes \epsilon^2 \otimes \epsilon^3 - \epsilon^2 \otimes \epsilon^1 \otimes \epsilon^3) = \sum_{\sigma} sgn(\sigma)\epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)} = \epsilon^{1,2,3} = \epsilon^1 \wedge (\epsilon^2 \wedge \epsilon^3)$. Bear in mind that some old books don't have this factor. More generally, Theorem: For any two multi-indices $I, J, \epsilon^I \wedge \epsilon^J = \epsilon^{IJ}$.

Proof: Let $P = (p_1, \ldots, p_{k+l})$. We need to show that $\epsilon^I \wedge \epsilon^J(e_{p_1}, \ldots) = \epsilon^{IJ}(e_{p_1}, \ldots)$ for all P. If P has repeated indices, by alternating-ness, both sides are zero. If P has an index that does not occur in I and J, then both sides are zero (why?) If P has no repeated indices, and P = IJ (any permutation of it does not need to be checked), then $\epsilon^{IJ}(e_P) = 1$. For the LHS, $\epsilon^I \wedge \epsilon^J(e_P) = \frac{1}{k!l!} \sum_{\sigma} sgn(\sigma)\epsilon^I(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}})\epsilon^J(e_{p_{\sigma(k+1)}}, \ldots)$. The only surviving terms are of the type $\sigma = \tau \psi$. Thus $\epsilon^I \wedge \epsilon^J(e_P) = \frac{1}{k!l!} \sum_{\tau} sgn(\tau)\epsilon^I(e_{\tau(I)}) \sum_{\psi} sgn(\psi)\epsilon^J(e_{\psi(J)}) = 1$ (why?)