
MA 235 - Lecture 21

1 Recap
1. Tensor products of vector spaces and relationship with Mult(V1 × V2, . . . ,R).

2. Symmetric and skew-symmetric tensors. Symmetrisation and alternation.

3. Tensor bundles and tensor fields. Definition of a Riemannian metric.

2 Tensor bundles and tensor fields
Returning to alternating tensors, here is a useful result: α is alternating iffα(v1, . . . , vk) =
0 whenever the collection v1, . . . , vk is linearly dependent: Indeed, if the latter holds,
in particular, if two of the vi coincide, α(v1, . . . , vk) = 0. This means, α(v1 + vi, . . . , vi +
v1, . . . , ) = 0. Thus,α(v1, . . . , vi+v1, . . .)+α(vi, . . . , vi+v1, . . .) = 0. Thusα(v1, . . . , vi, . . .) =
−α(vi, . . . , v1, . . .) and hence α is alternating.
Conversely, if α is alternating, and

∑
i civi = 0 with c1 ̸= 0 WLOG, then firstly,

α(v1, . . . , vk) = 0 whenever two of the vi coincide (why?) and hence α(c1v1, . . . , vk) =
α(c1v1+c2v2+ . . . , v2, . . .) = 0 (why?) Thus α(v1, . . . , vk) = 0 whenever they are linearly
dependent.

Let V be a f.d. vector space with a basis e1, . . . , en. Let ϵ1, . . . , ϵn be the dual basis for
V ∗. Given a multi-index I = (i1, . . . , ik), consider the k-covariant tensor ϵI(v1, . . . , vk) =

det

 ϵi1(v1) . . . ϵi1(vk)
... . . . ...

ϵik(v1) . . . ϵik(vk)

 =

 vi11 . . . vi1k
... . . . ...
vik1 . . . vikk

, that is, ϵI(v1, . . . , vk) is a minor of a

matrix. These ϵI are called elementary alternating k-tensors or elementary k-forms.
They are suppose to be (signed) volumes of some generalised parallelopipeds (as we
shall see later on). For future use, if I, J are multiindices of size k, then we define δIJ
as a determinant of a matrix Aab = (δ)iajb . δ

I
J = sgn(σ) if J = Iσ and no repetitions and

0 otherwise.
Properties:

• If I has a repeated index, ϵI = 0 (why?).

• If J = Iσ, then ϵI = sgn(σ)ϵJ (why?).

• ϵI(ej1 , . . . , ejk) = δIJ (why?).
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Consider the vector space Λk(V ∗) - the space of alternating covariant k-tensors/k-
forms on V . We want a basis of this space. Consider “increasing" multiindices,
i1 < i2 < . . .. For increasing-index-summation, we put a prime sign.
Theorem: Increasing-index elementary forms form a basis. As a consequence, dim(Λk) =(
n
k

)
when k ≤ n and 0 otherwise. Proof: If k > n, then by previous results, Λk

is the trivial vector space (why?) So assume k ≤ n. Firstly, the ϵI are linearly in-
dependent: If

∑′ cIϵ
I = 0, then consider 0 =

∑′ cIϵ
I(ej1 , ej2 , . . .) =

∑′ cIδ
I
J = cJ

(why?) Secondly, they span the space: Let α ∈ Λk. Then let αI = α(ei1 , . . .). Thus
(α−

∑′ αIϵ
I)(ej1 , . . . , ejn) = 0 (why?) and hence we are done (why?).

If V is an n-dimensional v. space, then elements of Λn(V ∗) are called “top forms"
(because there are no forms beyond them). Let T : V → V be a linear map and ω be a
top form.
Then ω(Tv1, . . . , T vn) = det(T )ω(v1, . . . , vn). Proof: Let e1, . . . , en be a basis of V . We
note that ω = cϵ12...n for some c. Since both sides are top forms, we only need to check
when vi = ei. The RHS is det(T )c. The LHS is c det(Te1, . . . , T en) = c det(T ) (why?).
Hence we are done.

3 Wedge product
How does one generalise the cross product? Why must one generalise it?
Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise
the notion of curl ∇× to formulate an FTC.
How: Naively, (a × b)ij = aibj − ajbi, i.e., it is a 2-form! So perhaps we can talk of the
“cross product" (we shall call it the wedge product) of a k-form with an l-form to get
ω ∧ η - a (k + l)-form.

Def: Suppose ω ∈ Λk(V ∗) and η ∈ Λl(V ∗), then ω ∧ η := (k+l)!
k!l!

Alt(ω ⊗ η).
So for instance, ϵ1 ∧ ϵ2 = ϵ1 ⊗ ϵ2 − ϵ2 ⊗ ϵ1 = ϵ1,2. So ϵ1 ∧ ϵ2(v, w) = v1w2 − v2w1.
Why the weird numerical factor? (ϵ1 ∧ ϵ2) ∧ ϵ3 = 3!

2!1!
Alt((ϵ1 ⊗ ϵ2 − ϵ2 ⊗ ϵ1) ⊗ ϵ3) =

3Alt(ϵ1 ⊗ ϵ2 ⊗ ϵ3 − ϵ2 ⊗ ϵ1 ⊗ ϵ3) =
∑

σ sgn(σ)ϵ
σ(1) ⊗ ϵσ(2) ⊗ ϵσ(3) = ϵ1,2,3 = ϵ1 ∧ (ϵ2 ∧ ϵ3).

Bear in mind that some old books don’t have this factor. More generally,
Theorem: For any two multi-indices I, J , ϵI ∧ ϵJ = ϵIJ .
Proof: Let P = (p1, . . . , pk+l). We need to show that ϵI ∧ ϵJ(ep1 , . . .) = ϵIJ(ep1 , . . .) for all
P . If P has repeated indices, by alternating-ness, both sides are zero. If P has an index
that does not occur in I and J , then both sides are zero (why?) If P has no repeated in-
dices, andP = IJ ( any permutation of it does not need to be checked), then ϵIJ(eP ) = 1.
For the LHS, ϵI ∧ ϵJ(eP ) = 1

k!l!

∑
σ sgn(σ)ϵ

I(epσ(1)
, . . . , epσ(k)

)ϵJ(epσ(k+1)
, . . .). The only sur-

viving terms are of the typeσ = τψ. Thus ϵI∧ϵJ(eP ) = 1
k!l!

∑
τ sgn(τ)ϵ

I(eτ(I))
∑

ψ sgn(ψ)ϵ
J(eψ(J)) =

1 (why?)
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