MA 235 - Lecture 21

1 Recap

1. Tensor products of vector spaces and relationship with $\operatorname{Mult}\left(V_{1} \times V_{2}, \ldots, \mathbb{R}\right)$.
2. Symmetric and skew-symmetric tensors. Symmetrisation and alternation.
3. Tensor bundles and tensor fields. Definition of a Riemannian metric.

2 Tensor bundles and tensor fields

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=$ 0 whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+\right.$ $\left.v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=$ $-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating.
Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG, then firstly, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever two of the v_{i} coincide (why?) and hence $\alpha\left(c_{1} v_{1}, \ldots, v_{k}\right)=$ $\alpha\left(c_{1} v_{1}+c_{2} v_{2}+\ldots, v_{2}, \ldots\right)=0$ (why?) Thus $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever they are linearly dependent.

Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{I}\left(v_{1}, \ldots, v_{k}\right)=$ $\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{I}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix. These ϵ^{I} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on). For future use, if I, J are multiindices of size k, then we define δ_{J}^{I} as a determinant of a matrix $A_{a b}=(\delta)_{j_{b}}^{i_{a}} . \delta_{J}^{I}=\operatorname{sgn}(\sigma)$ if $J=I_{\sigma}$ and no repetitions and 0 otherwise.
Properties:

- If I has a repeated index, $\epsilon^{I}=0$ (why?).
- If $J=I_{\sigma}$, then $\epsilon^{I}=\operatorname{sgn}(\sigma) \epsilon^{J}$ (why?).
- $\epsilon^{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\delta_{J}^{I}$ (why?).

Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$ forms on V. We want a basis of this space. Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=$ $\binom{n}{k}$ when $k \leq n$ and 0 otherwise. Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$. Firstly, the ϵ^{I} are linearly independent: If $\sum^{\prime} c_{I} \epsilon^{I}=0$, then consider $0=\sum^{\prime} c_{I} \epsilon^{I}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{I} \delta_{J}^{I}=c_{J}$ (why?) Secondly, they span the space: Let $\alpha \in \Lambda^{k}$. Then let $\alpha_{I}=\alpha\left(e_{i_{1}}, \ldots\right)$. Thus $\left(\alpha-\sum^{\prime} \alpha_{I} \epsilon^{I}\right)\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=0$ (why?) and hence we are done (why?).

If V is an n-dimensional v . space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them). Let $T: V \rightarrow V$ be a linear map and ω be a top form.
Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$. Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$. The RHS is $\operatorname{det}(T) c$. The LHS is $c \operatorname{det}\left(T e_{1}, \ldots, T e_{n}\right)=c \operatorname{det}(T)$ (why?). Hence we are done.

3 Wedge product

How does one generalise the cross product? Why must one generalise it?
Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2 -form! So perhaps we can talk of the "cross product" (we shall call it the wedge product) of a k-form with an l-form to get $\omega \wedge \eta$ - $\mathrm{a}(k+l)$-form.

Def: Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{l}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!l!} \operatorname{Alt}(\omega \otimes \eta)$.
So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$. Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!!!} \operatorname{Alt}\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ $3 \operatorname{Alt}\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor. More generally, Theorem: For any two multi-indices $I, J, \epsilon^{I} \wedge \epsilon^{J}=\epsilon^{I J}$.
Proof: Let $P=\left(p_{1}, \ldots, p_{k+l}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P. If P has repeated indices, by alternating-ness, both sides are zero. If P has an index that does not occur in I and J, then both sides are zero (why?) If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS, $\epsilon^{I} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{I}\left(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}}\right) \epsilon^{J}\left(e_{p_{\sigma(k+1)}}, \ldots\right)$. The only surviving terms are of the type $\sigma=\tau \psi$. Thus $\epsilon^{I} \bigwedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k l!!} \sum_{\tau} \operatorname{sgn}(\tau) \epsilon^{I}\left(e_{\tau(I)}\right) \sum_{\psi} \operatorname{sgn}(\psi) \epsilon^{J}\left(e_{\psi(J)}\right)=$ 1 (why?)

