MA 235 - Lecture 22

1 Recap

1. Basis and dimension of $\Lambda^{k}\left(V^{*}\right)$.
2. How top forms change under linear maps.
3. Definition of the wedge product and proof that $\epsilon^{I} \wedge \epsilon^{J}=\epsilon^{I J}$.

2 Wedge product

Properties of the wedge product:

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{I}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).

It turns out that the wedge product is the unique such map satisfying the above properties. Caution: Not every form is a wedge of 1 -forms (such forms are called decomposable). In \mathbb{R}^{3} there is an identification of 2 -forms with \mathbb{R}^{3} itself and hence the cross product makes sense (but the choice of this identification matters. Sometimes $\vec{a} \times \vec{b}$ is called a pseudovector).

3 Differential forms on manifolds

We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$. Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$. We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{I}$. We can define the wedge product of forms. Moreover, functions are treated as 0 -forms.
$f \wedge \eta=f \eta$ if f is a function.
Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=$ $\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$. For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$. Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$. For k-forms, the pullback is \mathbb{R}-linear (why?). $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?) Using this property, we can calculate pullbacks for several examples.
Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F^{*} f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is $F \circ f \operatorname{det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) d x^{1} \ldots d x^{n}$. In particular, $d \tilde{x}^{1} \wedge \ldots=\operatorname{det}\left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}}\right) d x^{1} \wedge \ldots$.

4 The exterior derivative

How can we generalise the curl $\nabla \times$? Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a " 1 -form" and take the "wedge product" with ω. This naive thing actually works! Def: Let $\omega=\sum^{\prime} \omega_{I} d x^{I}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{I}=\sum^{\prime} \sum \frac{\partial \omega_{I}}{\partial x^{k}} d x^{k} \wedge d x^{I}$. This d is called the exterior derivative.
For 0 -forms, i.e., functions $f, d f$ is the usual $d f$ defined earlier. For 1 -forms $\omega, d \omega=$ $\sum_{i<j}\left(\frac{\partial \omega_{j}}{\partial x^{i}}-\frac{\partial \omega_{i}}{\partial x^{j}}\right) d x^{i} \wedge d x^{j}$. It coincides with the usual curl in \mathbb{R}^{3}. Properties:

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. $\left(d\left(\sum^{\prime} \omega_{I} \eta_{J} d x^{I} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{I} \wedge d x^{J}+\right.$ $\left.\sum^{\prime} \omega_{I} d \eta_{J} \wedge d x^{I} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta.\right)$
- $d^{2}=d \circ d=0$. (It is true for 0-forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{I} \wedge d x^{I}\right)=$ $0-d \sum^{\prime} \omega_{I} d\left(d x^{I}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map, then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$. (So 0-forms, $F^{*} d f(X)=$ $d F^{*} f$ as before. Now $F^{*}\left(d \sum^{\prime} \omega_{I} d x^{I}\right)=\sum^{\prime} F^{*} d \omega_{I} \wedge F^{*} d x^{I}=\sum^{\prime} d F^{*} \omega_{I} \wedge F^{*} d x^{I}=$ $d\left(F^{*} \omega\right)$.)

