
MA 235 - Lecture 22

1 Recap
1. Basis and dimension of Λk(V ∗).

2. How top forms change under linear maps.

3. Definition of the wedge product and proof that ϵI ∧ ϵJ = ϵIJ .

2 Wedge product
Properties of the wedge product:

• Bilinearity (Proof: Checking the definition).

• Associativity (Proof: Check for basis vectors).

• ω ∧ η = (−1)klη ∧ ω (Proof: Check for basis vectors).

• ϵi1 ∧ ϵi2 . . . = ϵI (Proof: Inductively follows from associativity and the above
theorem)

• ω1 ∧ ω2 . . . ωk(v1, . . . , vk) = det(ωi(vj)) (Proof: Induction and checking for the
elementary ones).

It turns out that the wedge product is the unique such map satisfying the above
properties. Caution: Not every form is a wedge of 1-forms ( such forms are called
decomposable). In R3 there is an identification of 2-forms with R3 itself and hence the
cross product makes sense ( but the choice of this identification matters. Sometimes
a⃗× b⃗ is called a pseudovector).

3 Differential forms on manifolds
We can take the disjoint union ΛkT ∗M = ∪p∈MΛkT ∗

pM . Suppose (U, x) is a chart. Since
ϵi = dxi is a basis for T ∗

pM , whenever I is an increasing multi-index, ϵI = dxi1 ∧ dxi2 . . .
is a basis for ΛkT ∗

pM . We can give ΛkT ∗M a vector bundle structure using these coor-
dinate bases. A smooth section of this bundle of differential k-forms is called a k-form
field (or simply a k-form). Such an object is a smooth linear combination of dxI . We
can define the wedge product of forms. Moreover, functions are treated as 0-forms.
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f ∧ η = fη if f is a function.

Suppose F : M → N is smooth. We can define the pullback as follows: If
ω is a k-form field on N , F ∗ω is a k-form field on M such that (F ∗ω)p(v1, . . .) =
ωF (p)((F∗)p(v1), . . .). For functions, by definition, F ∗f(p) = f(F (p)) = f ◦ F (p). Recall
that F ∗df = dF ∗f . Moreover, if ω = ωidx

i, then F ∗ω = ωi ◦ FdF i. For k-forms, the
pullback is R-linear (why?). F ∗(ω ∧ η) = F ∗ω ∧ F ∗η (why?) Using this property, we
can calculate pullbacks for several examples.
Suppose ω = fdy1 . . . dyn, then F ∗ω = F ∗fdF 1 . . . dF n, which when acted on ∂

∂x1 , . . . is
F ◦ f det(∂F

i

∂xj )dx
1 . . . dxn. In particular, dx̃1 ∧ . . . = det( ∂x̃

i

∂xj )dx
1 ∧ . . ..

4 The exterior derivative
How can we generalise the curl ∇×? Naively, we can try d ∧ ω, i.e., pretend d = ∂

∂xidx
i

is a “1-form" and take the “wedge product" with ω. This naive thing actually works!
Def: Let ω =

∑′ ωIdx
I on U ⊂ Rn. Then dω :=

∑′ dωI ∧ dxI =
∑′ ∑ ∂ωI

∂xk dx
k ∧ dxI . This

d is called the exterior derivative.
For 0-forms, i.e., functions f , df is the usual df defined earlier. For 1-forms ω, dω =∑

i<j(
∂ωj

∂xi − ∂ωi

∂xj )dx
i ∧ dxj . It coincides with the usual curl in R3. Properties:

• d is R-linear. (Easy.)

• d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη. ( d(
∑′ ωIηJdx

I ∧ dxJ) =
∑′ ηJdωI ∧ dxI ∧ dxJ +∑′ ωIdηJ ∧ dxI ∧ dxJ = dω ∧ η +

∑′(−1)kω ∧ dη.)

• d2 = d ◦ d = 0. ( It is true for 0-forms (why?) So d(dω) = d(d
∑′ ωI ∧ dxI) =

0− d
∑′ ωId(dx

I) = 0.)

• If F : U → V is a smooth map, then F ∗(dω) = d(F ∗ω). ( So 0-forms, F ∗df(X) =
dF ∗f as before. Now F ∗(d

∑′ ωIdx
I) =

∑′ F ∗dωI ∧ F ∗dxI =
∑′ dF ∗ωI ∧ F ∗dxI =

d(F ∗ω).)
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