
MA 235 - Lecture 7

1 Recap
1. More examples of smooth manifolds (spheres, tori, real projective spaces)

2. Topological and smooth manifolds-with-boundary (no examples provided other
than the trivial ones)

3. Definition of smooth functions f : M → R and the locality property of smooth-
ness.

2 Smooth functions on manifolds
Def: Let M,N be smooth manifolds or manifolds-with-boundary. F : M → N is said
to be smooth at p ∈ M if there exist charts (ϕ, U) (with p ∈ U ) on M and (ψ, V ) (with
F (p) ∈ V ) on N , such that ψ ◦ F ◦ ϕ−1 : Û → V̂ is smooth at p. As before, we abuse
notation often.
As before, if F is smooth, it is continuous. Smoothness is a local property. As a
corollary, if Uα cover M and there are smooth maps Fα : Uα → N that agree on
overlaps, then there is a unique smooth map F :M → N such that F |Uα = Fα.
Properties:

• Constant maps c : M → N are smooth, Id : M → M is smooth, if U ⊂ M is an
open submanifold, then inclusion is smooth, compositions of smooth maps are
smooth.

• SupposeM1, . . . ,Mk are smooth manifolds with or without boundary, such that at
most one of them has a boundary. ThenM1×. . .Mk is a smooth manifold (possibly
with boundary). For each i, let πi be the projection. F : N → M1 ×M2 . . .Mk is
smooth iff Fi = πi ◦ F are so (HW).

A digression: A useful smooth atlas for the spheres: Consider the open cover of
Sn: U+ = {xn+1 ̸= 1} and U− = {xn+1 ̸= −1}, i.e., the sphere minus the north pole,
and minus the south pole. The stereographic projection: ϕ+ : U+ → Rn given by ϕ+ =

( x1

1−xn+1 , . . . ,
xn

1−xn+1 ) and likewise ϕ− = ( x1

1+xn+1 , . . . ,
xn

1+xn+1 ) are smoothly compatible
charts. They are compatible with the usual charts too (exercise) and hence define the
same smooth structure. In a sense, they are related to the notion thatSn is the one-point
compactification of Rn.
Examples of maps:
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• Consider S1 with the usual smooth structure. The function f : R → S1 given by
f(t) = (cos(t), sin(t)) is smooth. Indeed, consider the usual 4 graph charts on S1.
For instance, y > 0. Then ϕ(x, y) = x is the chart. So f(t) = cos(t) is the function
which is smooth in this chart. Likewise for the others.

• f : Rn → T n given by f(t) = (eit
1
, eit

2
, . . .) is smooth.

• The inclusion map i : Sn → Rn+1 is smooth: Indeed, in the stereographic charts,
we see that

∑
i(y

i
+)

2 = 1+xn+1

1−xn+1 from which we can solve for xn+1 smoothly, and
i(y1+, . . .) = ((1 − xn+1)y1, (1 − xn+1)y2, . . . , (1 − xn+1)yn, xn+1). Likewise for the
other chart.

• The quotient map π : Rn+1 − 0 → RPn is smooth (why?)

• Define q : Sn → RPn by restriction of π. It is smooth (why?)

• What about a smooth map from Sn to T n? (Hint: composition)

• From T n to Rn?

• From T n to Sn?

Diffeomorphisms: A smooth bĳection f : M → N is called a diffeomorphism if
f−1 is smooth. ( The open interval is not diffeomorphic to a circle for instance.) The
map F : Bn → Rn given by F (x) = x

1−|x|2 is a diffeomorphism. Any smooth coordinate
chart (ϕ, U) onM is actually a diffeomorphism between U ⊂M and ϕ(U) (⊂ Hn or Rn).
Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos
are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to
the boundary under a diffeo. Recall the smooth structure ϕ(u) = u3 on R? This
structure is not the same as the usual one, but is diffeomorphic to it: F : R → R̃ given by
F (x) = x1/3. In charts, it is F (t) = t which is a diffeo.
Differential topology: The aim of differential topology is to classify ( i.e., write a list)
of “standard manifolds" with a way of telling whether a given manifold is diffeo to
anything in the list. A 1-manifold is diffeo to either an open interval or a circle. If it has
boundary, then to an interval or a half-line. A compact 2-manifold is diffeo to “a g-hold
surface". Compact 3-manifolds are classified by geometrisation. For 4 and above, it is
complicated.

3 Local to global - partitions of unity
Unfortunately, one cannot glue smooth functions that agree on closed subsets. On the
other hand, it is helpful to construct lots of smooth functions. For instance, if one wants
a bump function or perhaps a 1 − 1 map from M to RN , and so on. More generally,
one often has local functions fα that one somehow wants to “blend together" to form
a global one. To this end, it is helpful to have a partition-of-unity, i.e., a collection of
smooth non-negative functions ϕα such that

∑
α ϕα = 1 and there is a restriction on

their supports.
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Note that it makes sense to only sum up finitely many numbers. So it is helpful
to have open covers Uα such that every point has a neighbourhood intersecting only
finitely many sets. Such covers are called locally finite. Unfortunately, not every cover
is locally finite ( or even has a locally finite subcover): Consider (−n, n) covering R.
The best we can do in this example is to take (m,m+1), (m− 1/2,m+1/2). This cover
is a refinement of the previous cover, i.e., every subset is in some Uα.
Paracompact space: Every open cover has a locally finite open refinement.
Proposition: Every smooth (in fact, just topological is enough) manifold is paracom-
pact. ( In fact, every metric space is so.) (Proof in the next class.)
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