
MA 235 - Lecture 23

1 Recap
1. Properties of the wedge product (including pullback)

2. Smooth form fields on manifolds.

3. Definition of the exterior derivative and properties:

• d is R-linear.
• d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
• d2 = d ◦ d = 0.
• If F : U → V is a smooth map, then F ∗(dω) = d(F ∗ω).

2 The exterior derivative
Suppose M is a smooth manifold with or without boundary.
Theorem: There are unique operators d : Ωk(M) → Ωk+1(M) satisfying the first three
properties above and df(X) = X(f). Moreover, in any chart, dω =

∑′ dωI ∧ dxI .
Proof: If there are two such operators, (d1 − d2)ω = d1ωI ∧ dxI +0− d2ωI ∧ dxI +0 = 0.
Define dω := ϕ∗(dRn(ϕ−1)∗ω). R-linearity is clear. d(ω ∧ η) = ϕ∗(dRn(ϕ−1)∗(ω ∧
η)) = ϕ∗(dRn(ϕ−1)∗ω ∧ (ϕ−1)∗η) + (−1)kϕ∗((ϕ−1)∗ω ∧ dRn(ϕ−1)∗η) = dω ∧ η + (−1)kω ∧
dη. As for the third property, d ◦ dω = ϕ∗(dRn(ϕ−1)∗ϕ∗(dRn(ϕ−1)∗ω) = 0. Lastly,
ϕ∗(dRn(ϕ−1)∗f(X) = X(f) (why?) dω is given by the expression above (why?) It is easy
to show that F ∗dω = dF ∗ω (why?)

3 Closed forms and exact forms
In physics, a common question is if ∇ × F⃗ = 0⃗, then is F⃗ = ∇f? The analogous
question for forms is if dω = 0 (closed form), is ω = dη (exact form)?
Here is an example: ω = xdy−ydx

x2+y2
. dω = 0 (why?) but ω ̸= df . Indeed, if ω = df , then

∂f
∂x

= x
x2+y2

, ∂f
∂y

= − y
x2+y2

. Consider
∫
∇f.dr⃗ = 0 but it also equals

∫ 2π

0
dθ = 2π (why?)

One can in fact prove that every closed 1-form on R2 − 0 is cω + dη for some c. So it
seems that this question has to do with the shape of the domain.
Poincaré lemma: Suppose ω is a closed k-form on Rn, then it is exact.
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De Rham cohomology: Hk(M) = closed k−forms
exact ones

.
H0(M) = Rk where k is the number of connected components (why?) H1(R2 − 0) =
R. Hk(M) = 0 when k > n (why?) Hk(Rn) = 0 for k > 0. It turns out that the
de Rham cohomology coincides with singular cohomology. So it is invariant under
homeomorphism. ( Thus showing how hard it is to distinguish between smooth
structures.)

4 Integration in Rn

There are two ways to integrate functions of more than one variable.
Riemann integral: One partitions a rectangle and defines the upper and lower Rie-
mann sums of bounded functions as in the one variable case. One can prove that a
function is Riemann integrable iff the set of discontinuities has measure zero. One can
define the Riemann integral over arbitrary domains. Continuous bounded functions
are Riemann integrable if the boundary has measure zero.
Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles.
Then one integrates simple functions and approximates measurable functions by sim-
ple ones.
For functions with measure-zero discontinuities, these two coincide.

Fubini: Continuous functions on compact rectangles can be integrated one variable
at a time in any order (Iterated integrals).
Fubini’s theorem provides a way to actually compute integrals. Example: Integrate
f(x, y) = x2 + y2 over x2 + y2 ≤ 1. The circle has measure zero (why?) Extend f by 0

outside the circle. Fubini implies that
∫
x2+y2≤1

(x2 + y2)dA =
∫ 1

−1

∫ √
1−x2

−
√
1−x2(x

2 + y2)dydx

(why?) Thus it is
∫ 1

−1
(2x2

√
1− x2 + 2

3
(1− x2)3/2)dx which can be integrated (how?).

The volume of a parallelopiped Pn whose sides are a⃗i is | det(A)|.
Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant
under orthonormal matrices (how?). Thus we can assume that a⃗1, . . . , a⃗n−1 span the
plane xn = 0. Pn = {Pn−1 + sa⃗n | 0 ≤ s ≤ 1}. One can (exercise) “break" off a piece and
translate to ensure that vol(Pn) = vol(Pn−1)an = | det(A)|.

Clearly the above integral could have been more easily evaluated in polar coordi-
nates. But what does dxdy change to? Morally, it ought to be rdrdθ. We expect that
a “small" rectangle with volume dx1dx2 . . . under a change of variables y(x) roughly
changes to a small parallelopiped (when viewed in the x-coordinates) with edges
∂y⃗
∂xidx

i. In the new coordinates, the volume is simply dy1dy2 . . .. Thus dy1dy2 . . . =

| det
(

∂yi

∂xj

)
|dx1dx2 . . .. In other words, we expect that

∫
f(y)dVy =

∫
f(y(x))| det

(
∂yi

∂xj

)
|dVx.

Theorem: LetD,E be open bounded domains of integration inRk ( with boundaries
of measure zero). Suppose f : Ē → R is a bounded continuous function. LetG : D̄ → Ē
be a smooth map that is a diffeo from D to E. Then

∫
E
fdV =

∫
D
f ◦G|DG|dV .

It turns out that (proof omitted) by an approximation argument, it is enough to consider
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the case where f is a continuous compactly supported function on Rk such that its
support lies in E. Before we embark on the proof, in one variable, the theorem would
read as

∫
E
f(y)dy =

∫
D
f(y(x))|y′(x)|dx. The absolute value is puzzling! Let’s look at

an example:
∫ 1

2
cos(1/x)−dx

x2 =
∫ 1

1/2
cos(y)dy = sin(1) − sin(1/2). The key point is that

the limits are from 2 to 1! If we insist on limits being from lower numbers to higher
numbers, then the integral is

∫ 2

1
cos(1/x)dx

x2 =
∫ 2

1
cos(1/x)|−1

x2 |dx.
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