
MA 235 - Lecture 15

1 Level sets and Sard’s theorem
Let M,N be smooth manifolds with or without boundary, F : M → N be a smooth
map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also
smooth. ( Proof: Composition with inclusion.)
However, restricting to the codomain is more subtle. (Example: G(t) = (sin(2t), sin(t))
with its domain extended to R is not continuous to the figure-8 but is smooth when
treated as a map to R2.) Moreover, if the codomain has a boundary, again it is a tricky
affair.
This is not a problem for embedded submanifolds (without boundary): Let S ⊂ M be an
embedded submanifold andM be a manifold. LetN be a manifold. Then ifF : N → M
is a smooth map such that F (N) ⊂ S, then F : N → S is a smooth map. (HW)
Using these results we can show that submanifolds have a unique smooth structure.

Recall that Sn was defined as
∑

(xi)2 = 1. Does this mean that if we set our
favourite smooth function to 0, we will get a compact n− 1-dimensional submanifold
of Rn? Nope. There are several kinds of counterexamples:

1. It need not be compact: Take x = 0.

2. It can be empty: x2 + y2 + 1 = 0. ( By the way, empty sets are manifolds of any
dimension by definition!)

3. It need not even be a topological manifold: x2 − y2 = 0.

4. It need not be a submanifold: y2 − x3 = 0. Indeed, if this set were a submanifold
near the origin, then near the origin, we can change coordinates to (u, v) so that
v = 0 is this subset,i .e., this subset is u → (x(u, 0), y(u, 0)). Suppose ∂x

∂u
̸= 0 at the

origin. Then changing charts to (x, v), we see that y = y(u, v) = y(u(x, v), v) and
hence y2 = x3 near the origin iff y = y(u(x, 0), 0), i.e., y is a smooth function of
x. But that is impossible. ( Likewise, if ∂x

∂u
= 0 at the origin, then x is a smooth

function of y.)

Compactness and emptyness aside, the main problem appears to be that ∇f = 0 at
some points where f = 0. ( Caution: This is not a necessary condition by any means!
Take x2 = 0. It is a submanifold!)
Def: Let M,N be smooth manifolds (without boundary) and F : M → N be a smooth
map. A point p ∈ M is a regular point of F if (F∗)p is surjective. Otherwise, it is a critical
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point of F . A regular value of F is a point c ∈ N such that every point in F−1(c) ⊂ M is
a regular point of F . A critical value of F is a point c ∈ N such that it is not a regular
value, i.e., F−1(c) has at least one critical point. If c is a regular value, then F−1(c) is a
regular level set. Note that if F−1(c) = ∅, then c is a regular value.
Theorem: Every regular level set of a smooth map between smooth manifolds is an
embedded submanifold whose codimension equals the codimension of the codomain.
Proof: Let S = F−1(c) ⊂ M . For every p ∈ S, choose arbitrary charts centred
p, F (p) = c. Thus [DF ] has constant rank. Hence we can change charts (to cen-
tred ones) so that F (x) = (x1, . . . , xn). Thus S is an n − m-slice near p. Thus S is an
embedded submanifold with dimension n−m.
If in addition, F is a proper map, that is F−1(compact) = compact, then if c is a regular
value, F−1(c) is compact submanifold. In fact, a regular level set is also a properly em-
bedded submanifold, i.e., the inclusion map is proper. Indeed, F−1(c) is a closed subset
by continuity. If K ⊂ M is compact, then K ∩ F−1(c) is compact. Hence i−1(F−1(c)) is
compact.

S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion
F : U → Rm−k. ( Such a function is called a local defining function.)
Proof: If S is a submanifold: There are local slice charts. Take F = (xk+1, . . . , xn) for
such charts.
If there is a local defining function: It is locally a submanifold and hence satisfies the
local slice condition. Thus it is a submanifold.
It is not true that the codimension-1 submanifold of Rn has a global defining function.
However, under some necessary condition (nowhere vanishing smoothly varying unit
normal), it is true. Under a similar necessary condition, it is harder to prove but true
that a codimension-2 submanifold of Rn has a defining function. As far as I know, this
problem is open for higher codimensions.

Do regular values exist at all?
Sard’s theorem (a weak version): For a smooth map F : M → N , the set of regular
values is dense in N .
In particular, if f : M → R is a smooth exhaustion, then there is an increasing sequence
ci → ∞ such that f−1(ci) is a smooth manifold and f−1(−∞, ci] form an exhaustion.
In fact, f−1(−∞, ci] form manifolds-with-boundary (why?). There cannot be an onto
smooth map from R to R2: Indeed, if there is such a map, then there is a c ∈ R2 such
that f−1(c) is regular level set. Hence f−1(c) is a submanifold of dimension 1− 2 = −1!
A contradiction. On the other hand, there are continuous space filling curves.

2 Vector fields and the tangent bundle
Recall that one of the points of studying tangent vectors was to model particles flowing
on a manifold. For instance, suppose we take the flow of a fluid (maybe electrons or
even water) on a surface (like say the surface of a metallic ball). The velocities of the
particles vary smoothly. Moreover, suppose we consider the flow for one second. Then
a particle at p goes to some other point. This operation is reversible. We can hope that
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it is a diffeomorphism of the manifold! Lastly, suppose we cover the sphere S2 with
hair. Can we comb the sphere so that no hair sticks out completely? The answer is no
(the hairy ball theorem).
All of the above need a notion of smoothly varying tangent vectors (such an object is
called a smooth vector field).

If a manifold M is a submanifold of RN , then we can easily define a notion of
smoothly varying tangent vectors: Simply take a smooth function X : M → RN such
that X(p) lies in the tangent plane at p. On paper, using Whitney embedding, we can
make this definition on any manifold. But we want a more intrinsic definition ( without
reference to a particular embedding).
Def: Let TM = ∪p∈MTpM . A function X : M → TM such that X(p) ∈ TpM is called a
vector field.
We want to define a smooth vector field. At least locally, can we come up with a
reasonable example of a smooth vector field? A natural choice is the coordinate basis
∂
∂xi .
Def: Let M be a smooth manifold (with or without boundary). A vector field
X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such
that X = X i ∂

∂xi where the functions X i : U → R are smooth at p. A smooth vector field
is one that is smooth at all points.
The definition of smoothness is independent of the choice of coordinate chart: Sup-
pose (Ũ , x̃) is another coordinate chart around p, then on U ∩ Ũ , X̃ i = ∂x̃i

∂xjX
j . Since the

coefficients are smooth, X̃ i is a linear combination of functions that are smooth at p,
and hence X̃ i are smooth at p.
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