
MA 235 - Lecture 24

1 Recap
1. Exterior derivative on manifolds-with-boundary.

2. Riemann and Lebesgue integrals. Fubini’s theorem. Example.

3. Statement of change of variables formula. “Paradox" with one variable substitu-
tion.

2 Integration in Rn

Theorem: Let D,E be open bounded domains of integration in Rk ( with boundaries of
measure zero). Suppose f : Ē → R is a bounded continuous function. Let G : D̄ → Ē
be a smooth map that is a diffeo from D to E. Then

∫
E
fdV =

∫
D
f ◦G|DG|dV .

It turns out that (proof omitted) by an approximation argument, it is enough to consider
the case where f is a continuous compactly supported function on Rk such that its
support lies in E. Before we embark on the proof, in one variable, the theorem would
read as

∫
E
f(y)dy =

∫
D
f(y(x))|y′(x)|dx. The absolute value is puzzling! Let’s look at

an example:
∫ 1

2
cos(1/x)−dx

x2 =
∫ 1

1/2
cos(y)dy = sin(1) − sin(1/2). The key point is that

the limits are from 2 to 1! If we insist on limits being from lower numbers to higher
numbers, then the integral is

∫ 2

1
cos(1/x)dx

x2 =
∫ 2

1
cos(1/x)|−1

x2 |dx.
However, if we want to take dy = y′(x)dx more seriously, then dy, dx ought to be

1-forms. That being said, if we want to define integration only for 1-forms (as opposed
to functions), then we must restrict ourselves to change of variables whose y′ is > 0.
We shall return to this connection with forms later.

Example: Evaluate
∫
B(0,1)

x2y2dA if it is Lebesgue integrable.
Note that the boundary of the disc has measure zero (why?) and x2y2 is continuous and
bounded on the disc. Hence it is Riemann integrable and thus Lebesgue integrable.
Now if we throw out the x-axis (and the origin), the integral does not change because
that set has measure zero. Now G : (0, 1) × (0, 2π) → B(0, 1) − {x − axis} given by
G(r, θ) = (r cos(θ), r sin(θ)) is smooth, 1-1, onto (why?) and det(DG) = r > 0. Thus IFT
implies that the inverse is smooth. Moreover, G : [0, 1]× [0, 2π] → ¯B(0, 1) is smooth and
the boundary has measure zero. Thus by the change of variables formula, the given
integral is

∫
(0,1)×(0,2π)

r5 cos2 θ sin2 θ which can be evaluated using the Fubini theorem
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and the one-variable FTC.

A sketch of proof of change of variables: We want to first prove the result for
some special kinds of change of variables. Then we want to write any G as a com-
position of these special kinds. Firstly, by Fubini, the theorem is true when G
merely exchanges two coordinates. Secondly, this theorem is true if we consider
primitive mappings, that is, ones that change at most one coordinate, i.e., G(x) =
(x1, . . . , xi−1, g(x), xi+1, . . .) (why?). Thirdly, if the theorem is true for P,Q, then
if S = P ◦ Q,

∫
f(z)dz =

∫
f(P (y))|DP (y)|dy =

∫
f(S(x))|DP (Q(x))||DQ(x)|dx =∫

f(S(x))|DS(x)|dx. Fourthly, it turns out (proof in Rudin by IFT one variable at a
time) that every T is locally T (x) = T (a)+B1 ◦ . . . Bk−1Gk−1 ◦ . . . G1(x− a) where Bi are
identity or flips, and Gi are primitive. So if the support of f lies in a small neighbour-
hood where this decomposition holds, we are done. Otherwise use a partition-of-unity.

3 Orientability
Ideally, on a manifold, we would like to define the integral of a function f : M → R
as

∫
f =

∑
i

∫
ρifdx

1dx2 . . . where ρi are partitions-of-unity. The problem is that if
we change coordinates, then the integrals change! Heck even in Rn, if f is compactly
supported, if we take a smooth diffeo T : Rn → Rn, then the integrals will not be the
same. The modulus of the Jacobian kicks in. So the bottom line is that we cannot hope
to define the integral of a function f : M → R. However, taking the dxi seriously as
1-forms, we notice that the Jacobian factor is almost exactly how forms change under
coordinate changes!
Thus, to begin with, let U be an open subset of Rn or Hn. Let ω = fdx1 ∧ dx2 ∧ . . . be
an n-form that is compactly supported on U . We define

∫
U
ω :=

∫
U
fdx1dx2 . . . ( simply

erase the wedges!).

On the other hand, in Rn we can define the integrals of top forms. So we could try∫
M
ω =

∑
i

∫
Rn ρifdx

1dx2 . . .. The only problem is that the sign of the Jacobian plays
a role in the change of variables formula. What if we could cover M by coordinate
charts such that the Jacobians are all positive? In this case, we have some hope. “Def"
(Warning: This definition is useful when dim(M) > 1 or ∂M = ϕ.): Suppose M is a
smooth manifold (with or without boundary) and (xα, Uα) is a smooth atlas consisting
of connected charts such that det(∂x

i
α

∂xj
β

) > 0 on Uα ∩ Uβ for all α, β, then we say that M
is equipped with an oriented atlas/ M has a given orientation. ( If such an atlas exists,
then we say that M is orientable.)

When do we say that two such atlases give the “same" orientation?
Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/
define the same orientation if A ∪ B is an oriented atlas.
Suppose M is orientable. Then orientation-compatibility is an equivalence relation
among oriented atlases (why?) To determine the number of equivalence classes, we
need a more concise interpretation of orientation.
Given an oriented manifold (M, (xα, Uα)), let ρα be a partition-of-unity subordinate to
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the atlas. Define ω =
∑

α ραdx
1
α ∧ dx2

α . . .. Note that ω ̸= 0 anywhere (why?) Moreover,
ω is a positive multiple of dx1

α ∧ dx2
α . . . for all α. Conversely, suppose M either does

not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form,
and suppose A is any atlas consisting of connected charts. We can change the charts
and produce a new atlas to make sure that ω( ∂

∂x1
α
, ∂
∂x2

α
, . . .) > 0 for all α. Indeed, if

dim(M) > 1, then simply interchange two coordinates. That flips the sign. (Of course,
prove that this “fix" actually produces a collection of oriented charts.) If dim(M) = 1
and ∂M = ϕ, then take tα → −tα. (This does not work if one has a boundary. Why?)
So a manifold (such that dim(M) > 1 or ∂M = ϕ) is orientable iff it admits a nowhere
vanishing top form. We say that a chart is compatible with an orientation form ω if
ω( ∂

∂x1 , . . .) > 0 at all points.

In fact, define an equivalence relation between nowhere vanishing top forms: ω ∼ ω′

if ω = fω′ where f > 0. Then ifM is connected we have exactly two equivalence classes
(why?)
The above correspondence gives a bĳection between the two sets of equivalence
classes when M has no boundary or when dim(M) > 1, i.e., Given [(xα, Uα)] con-
sider [

∑
α ραdx

1
α ∧ . . .]. Firstly, this map is well-defined. Secondly, it is onto (why?)

Thirdly, it is 1− 1: If
∑

α ραdx1
α∧...∑

α′ ρ′αdy
1
α′∧...

> 0, and if these two atlases are not compatible then

det( ∂xi
α

∂yj
β′
) < 0 for some α, β′ throughout Uα ∩ Uβ′ (why?). This means that the above

ratio must be negative in this region (why?) Thus we have a contradiction.
The case when dim(M) = 1 and ∂M ̸= ϕ: The above correspondence means that

we have exactly two equivalence classes for orientation when ∂M = ϕ or dim(M) > 1.
Often, one arbitrarily designates one class as “positively oriented" and the other as
negatively oriented. Unfortunately, in this case since we have defined the boundary
chart to have positive last coordinate, our definition of orientation is not a nice one. To
avoid this problem, one defines orientation of manifolds using the existence of nowhere
vanishing top forms. Then every orientable manifold (with or without boundary) has
exactly two orientation classes. When ∂M = ϕ or dim(M) > 1, this corresponds to
orienting using coordinate charts.
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