
1 Logistics
Email: vamsipingali@iisc.ac.in. Course webpage: http://math.iisc.ac.in/vamsipingali/
ma235manifoldsspring2023/ma235.html. HW : 20% (Roughly once in two weeks.
Copying (from each other or the internet) is strictly not allowed.), Midterm - 30%, and
Final - 50%. Text book: Introduction to Smooth Manifolds by John Lee.

2 What is this course about and why should you care?
We will review multivariable calculus and study these objects called smooth manifolds.
Smooth manifolds are generalisations of objects like circles, spheres, paraboloids, etc.
Here are some questions that almost force us to study such objects:

1. Is the parallel postulate of Euclid a consequence of the other axioms? (Rieman-
nian Geometry)

2. Maximise a function subject to some constraints (Optimisation).

3. Model the motion of a robotic arm (Classical Mechanics).

4. Predict the orbit of Mercury to high precision (General Relativity).

5. Land Chandrayaan-3 on the moon (Control theory).

6. How can we classify cubic curves? (Algebraic Geometry).

7. Prove that there are at most finitely many solutions to an + bn = cn when n ≥ 4 (a
consequence of the Mordell conjecture of Number Theory).

A quick history lesson (copied liberally from Wikipedia):

• Indus-Valley, Babylonian, Egyptian, and Chinese civilisations all knew some ge-
ometric figures and a little bit of measurement.

• Euclid in the 3rd century BC axiomatised geometry. Fifth postulate.

• Perspective art during the 14th century Renaissance lead to projective geometry
(no focus on distances. Only on intersections).

• Analytic/Coordinate geometry of Fermat and Descartes (17th century) and cal-
culus due to Newton and Leibniz.

• Euler’s solution of the seven bridges problem.

• Non-Euclidean geometries and Theorema Egregium (Gauss, 19th century). Rie-
mann and curvature in higher dimensions.

• Poincaré (20th century) and algebraic topology.

• Einstein and General Relativity. Whitney and Whitehead define manifolds.

• 2006: Perelman proved the Poincaré conjecture.

http://math.iisc.ac.in/vamsipingali/ma235manifoldsspring2023/ma235.html
http://math.iisc.ac.in/vamsipingali/ma235manifoldsspring2023/ma235.html


3 Review of multivariable calculus
We denote coordinates in Rn with superscripts, i.e., x1, x2, . . . , xn. An open ball Br(a) ∈
Rn is |x− a| < r. A closed ball is denoted as B̄r(a). An open set U ⊂ Rn is one where
every a ∈ U has an open ball Ba(r) ⊂ U , i.e., open balls form a basis. ( So do open
rectangles.) Rn is first countable, i.e., it has a countable local basis around every point.
It is also second countable, i.e., it has a countable basis. A closed set is one whose
complement is open. S ⊂ Rn is closed iff it contains all of its limit points. A closed
bounded subset of Rn is compact.

F : U ⊂ Rn → Rm is continuous at a iff given ϵ > 0, there exists δ > 0 such that
|F (x) − F (a)| < ϵ whenever |x − a| < δ. If F, F−1 are continuous, F is said to be a
homeomorphism. F is continuous at a iff for every sequence xn → a, F (xn) → F (a).
As a consequence, f(x, y) = xy

x2+y2
when (x, y) ̸= (0, 0) and f(0, 0) = 0 is discontinuous

at (0, 0) inspite of being continuous in each variable taken separately. The usual laws of
continuity hold. Hence, rational functions are continuous wherever the denominator
is not zero.
Invariance of domain: If U is open, and F : U ⊂ Rn → Rn is 1 − 1 and continuous,
then F (U) is open and U is homeomorphic to it. As a consequence, an open subset of
Rn cannot be homeomorphic to an open subset of Rm when m ̸= n. The proof uses
the Brouwer fixed point theorem, which in turn uses some algebraic topology ( degree
theory).

Let U ⊂ Rn be open. F : U → Rm is said to be differentiable at a if the lin-
ear approximation holds, i.e., there exists a linear map DFa : Rn → Rm such that
limh→0

F (a+h)−F (a)−DFa(h)
|h| = 0. If F is differentiable at a, it is partially differentiable w.r.t

each coordinate andDFa =

[
∂F 1

∂x1
∂F 1

∂x2 . . .
... . . . ...

]
. F : U → Rm is said to be directionally dif-

ferentiable along v ∈ Rn with directional derivative Lv,a if limh→0
F (a+hv)−F (a)−Lv,ah

h
= 0.

If F is differentiable, then it is directionally so, with Lv,a = DFa(v), i.e., Li
v,a =∑

j
∂F i

∂xj (a)v
j .

Differentiability implies continuity. Unfortunately, even being directionally differ-
entiable along all directions is not good enough! Let f(x, y) = xy2

x2+y4
if x ̸= 0 and

f(0, y) = 0. It turns out (HW) that f is directionally differentiable along all direc-
tions at (0, 0) but f is NOT continuous at (0, 0) and hence NOT differentiable there!
f(x, y) = ||x| − |y|| − |x| − |y|. The partials exist and f is continuous at (0, 0) but it
isn’t differentiable (HW). If the partials exist in a neighbourhood of a AND they are
continuous THEN F is differentiable at a. Such functions are called C1. If F is C1

and F−1 is C1, then F is said to be a C1 diffeomorphism. Thus, rational functions are
differentiable ( in fact C1) away from the zeroes of their denominators.

Tangent plane: If f : U → R is differentiable, then we can talk of the tangent plane
to the graph of y = f(x) in Rn+1: y = f(a) + [Dfa][x− a].
All the usual rules for derivatives hold. Very importantly, here is the chain rule: Let
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f : U → Rm be differentiable at a and g : V ⊂ Rm → Rp be differentiable at f(a). Then
g ◦ f is differentiable at a and D(g ◦ f)a = Dgf(a)Dfa.
Corollary: If f : U → R is differentiable, and γ : (−ϵ, ϵ) → R is differentiable, then f ◦ γ
is so with d

dt
(f ◦ γ) = [Df ]γ(t)γ

′(t) =
∑

i
∂f
∂xi

dxi

dt
.

Corollary: Let U ⊂ Rn, V ⊂ Rm be open. Suppose f : U → V is bĳective and differen-
tiable, and so is f−1 : V → U , then m = n.
Proof: Indeed, f ◦ f−1(x) = x. Thus, Dff−1(a)Df−1

a = I . Likewise, Df−1
a Dff−1(a) = I .

Thus m = n and Dfa is an isomorphism for all a ∈ U .

Gradient and steepest ascent: Suppose f is differentiable on an open set U ⊂ Rn.
The gradient Dfa is the direction of steepest increase : Indeed, the directional deriva-
tive La,vf along v is [Dfa][v]. Now the famous/infamous Cauchy-Schwarz inequality
says that −|⃗a||⃗b| ≤ a⃗.⃗b ≤ |⃗a||⃗b| with equality holding only when a⃗ and b⃗ are parallel.
Thus, −|Dfa||v| ≤ La,vf ≤ |Dfa||v| with equality provided v is parallel/antiparallel to
Dfa. For instance, if f(x, y) = x2 + 2y2, then at (1, 1), Df(1,1) = (2, 4). Indeed, moving
more in the y-direction would cause a greater increase in the height.

Local extrema - the first derivative test: Let U ⊂ Rn be open and f :→ R be a
function. a ∈ U is said to be a local minimum if f(x) ≥ f(a) ∀ x ∈ B where a ∈ B ⊂ U
is some open ball centred at a. Likewise for a local maximum. If a is a local ex-
tremum and f is differentiable at a, then Dfa = (0, 0, 0, . . .) : Indeed, fix v and consider
gv(t) = f(a + tv). It attains a local minimum at t = 0 and is differentiable there. By
one-variable calculus, g′v(0) = Dfav = 0. Since this holds for all v, Dfa = [0 0 0 . . .].

Finding global extrema: Recall that since closed and bounded sets are compact,
a continuous function on them achieves global maxima and minima. How does one
find them? Here is a simple example where one can find global extrema : Con-
sider f(x, y) = 2x3 − 3y2 on the disc x2 + y2 ≤ 4. First we find local extrema :
Df = [6x2 − 6y] = [0 0] when x = y = 0 which is inside the unit disc. The value of f
is f(0, 0) = 0. But global extrema can potentially occur on the boundary x2 + y2 = 4
(and there the gradient is not necessarily zero). On the boundary, the function is
g(x) = 2x3 − 3(4 − x2) = 2x3 + 3x2 − 12 and −2 ≤ x ≤ 2. Now we solve a one-
variable global extrema problem. Now g′(x) = 6x2 + 6x = 0 precisely when x = 0 or
x = −1 both of which are inside the interval. g(0) = −12, g(−1) = −11. Moreover,
g(−2) = −16, g(2) = 16. Thus the maximum occurs at x = 2, y = 0 and the minimum
at x = −2, y = 0.

Higher derivatives: It is of course possible that a function is differentiable and
the derivative is continuous, and all the second partials exist but it is not twice-
differentiable. Here is an even weirder example : f(x, y) = xy(x2−y2)

x2+y2
for (x, y) ̸= (0, 0)

and f(0, 0) = 0. By properties, f is differentiable on R2 − {(0, 0)}. At (0, 0) we
claim that it is differentiable and the gradient is 0 : |f(x, y) − 0 − 0| = |xy| |x

2−y2|
x2+y2

≤
x2 + y2 (why ?) Therefore, if

√
x2 + y2 < ϵ, we are done (Why ?) Now fx =

y(x2−y2)(x2+y2)+2x2y(x2+y2)−2x2y(x2−y2)
(x2+y2)2

= y x4−y4−4x2y2

(x2+y2)2
, fy = −xy4−x4−4x2y2

(x2+y2)2
away from (0, 0).

Thus fx, fy are continuous throughout. However, fxy = limh→0
fy(h,0)−fy(0,0)

h
= 1 and
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fyx = limh→0
fx(0,h)−fx(0,0)

h
= −1. Therefore, fxy ̸= fyx in general !

Theorem (Clairaut) : If all the second partials exist and are continuous are a, then the
mixed partials are equal.

A function is called C2 if DF is differentiable and D2F is continuous ( and likewise
for Ck). Notation: If α = (α1, α2, . . . , αk) is a multi-index, often α! := α1!α2! . . ., and
|α| = α1 + α2 + . . .. ∂αf = ∂|α|f

∂(x1)α1∂(x2)α2 ...
. If a function is Ck for all k, it is said to be C∞

or smooth.
Proof of Clairaut: We will prove it for two-variable functions. The general case fol-
lows from this special case (why?) Let u(h, k) = f(a+ h, b+ k)− f(a+ h, b), v(h, k) =
f(a+h, b+k)−f(a, b+k), andw(h, k) = f(a+h, b+k)−f(a+h, b)−f(a, b+k)−f(a, b).
Now, w(h, k) = u(h, k) − u(0, k) = h∂xu(c1, k) by MVT for c1 ∈ [0, h]. This equals
h(∂xf(a+ c1, b+k)−∂xf(a+ c1, b)) = hk∂y∂xf(a+ c1, b+ c2) where c2 ∈ [0, k]. Likewise,
w(h, k) = v(h, k)−v(h, 0) = hk∂x∂yf(a+d1, b+d2)where d1 ∈ [0, h], d2 ∈ [0, k]. Dividing
byhk, we see that ∂y∂xf(a+c1, b+c2) = ∂x∂yf(a+d1, b+d2). By assumption of continuity
of the second partials, there exists a δ > 0 such that |∂y∂xf(a+c1, b+c2)−∂y∂xf(a, b)| < ϵ

2
,

and |∂x∂yf(a + d1, b + d2) − ∂x∂yf(a, b)| < ϵ
2

whenever |(h, k)| < δ (why ?). Thus,
|fxy(a, b)− fyx(a, b)| < ϵ for all ϵ > 0. We are done.
Using the C2 Clairaut, we can prove the Ck Clairaut for any k.

Taylor’s theorem (Peano form of remainder): Let f : U → R be Ck at a ∈ U . Then
there exists functions hα on a neighbourhood of a such that f(x) =

∑
|α|≤k

∂αf(a)
α!

(x1 −
a1)α1(x2 − a2)α2 . . .+ o(∥x− a∥k).
If the Taylor series converges AND the function equals its Taylor series, it is said to be
real-analytic.

Proof of a version of Taylor’s theorem:

Theorem 1. Let U ⊂ Rn be an open set and f : U → R be a Ck function on U . Let a ∈ U
and |h| < ϵ such that Ba(ϵ) ⊂ U . Then the polynomial pa,k(h) = f(a) +

∑
i

∂f
∂xi

(a)h +
1
2

∑
i,j

∂2f
∂xi∂xj

(a)hihj + . . .+
∑

∥α∥=k
Dαf(a)

α!
hα is the unique polynomial of degree ≤ k (degree

meaning the maximum sum of powers) such that limh→0
f(a+h)−pk,a(h)

|h|k = 0. Moreover, if f is
Ck+1, then f(a+ h) = pk,a(h) +

∑
|α|=k+1

Dαf(η)hα

α!
, where η lies in Ba(h).

Proof. Uniqueness is easy and left as an exercise. Let h ̸= 0 (if it is equal to 0, we are
done). Consider the one-variable function q(t) = f(a + t h

∥h∥) on |t| < ϵ. This function
is Ck (because it is a composition of Ck functions). Thus we can apply the one-variable
Taylor theorem to it to conclude that q(∥h∥) = q(0) + q′(0)∥h∥+ . . ..
Now we claim inductively that q(m)(t)∥h∥m

m!
=

∑
|α|=m

Dαf(a+t h
∥h∥ )h

α

α!
:

Indeed, for m = 1 we are done by the Chain rule. Assume the truth of this state-
ment for 1, 2 . . . ,m − 1. We apply the induction hypothesis to q(m−1)(t) to con-
clude that q(m)(t)∥h∥m

m!
= ∥h∥

m

∑
|α|=m−1

d
dt

Dαf(a+t h
∥h∥ )h

α

α!
=

∑
|α|=m−1

∑
i

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
=∑

i

∑
|α|=m−1

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
. We want to compare the last expression to

∑
|β|=m

Dβf(a+t h
∥h∥ )h

β

β!
.

We apply the induction hypothesis to q(m−1)(t) to conclude that q(m)(t)∥h∥m
m!

= ∥h∥
m

∑
|α|=m−1

d
dt

Dαf(a+t h
∥h∥ )h

α

α!
=∑

|α|=m−1

∑
i

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
=

∑
i

∑
|α|=m−1

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
. We want to compare
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the last expression to
∑

|β|=m

Dβf(a+t h
∥h∥ )h

β

β!
.

Given i such that βi ≥ 1, every multi-index vector β can be written uniquely as
β = α+ ei where |α| = m− 1. However, this can be done for each such i. Hence, if we
fix β, then 1

α!m
= αi+1=βi

β!m
and if we sum over all i giving rise to the same β, then we get∑

i
βi

β!m
= 1

β!
. Hence these two expressions are the same, and we are done.

Now the one-variable Taylor theorem, i.e., the following theorem, completes the
proof.
Theorem 2. Let U ⊂ R be an open set and f : U → R a Ck function on U . Let a ∈ U and
|h| < ϵ such that (a− ϵ, a+ ϵ) ∈ U . Then the polynomial pk,a(h) = f(a) + f ′(a)h+ f ′′(a)h2

2!
+

. . . + f (k)(a)hk

k!
is the unique polynomial of degree ≤ k such that limh→0

f(a+h)−pk,a(h)

hk = 0.
Moreover, if f is Ck+1, then f(a + h) = pk,a(h) +

f (k+1)(η)hk+1

(k+1)!
, where η lies between a and

a+ h.

The second derivative test: Let U ⊂ Rn be open and f : U → R be a C1 function.
Suppose f is C2 at a ∈ U and Dfa = 0.
Theorem: If

∑
i,j fij(a)v

ivj > 0 for all v ̸= 0, thena is a local minimum. If
∑

i,j fij(a)v
ivj <

0 for all v ̸= 0, then a is a local maximum. Conversely, if a is a local minimum∑
i,j fij(a)v

ivj ≥ 0 for all v ( and likewise for a local max).
Proof: Taylor’s theorem ( with the Peano form of the remainder) implies that if∑

i,j fij(a)v
ivj > 0, f(a + v) − f(a) > 0 for all small v. Thus a is a local mini-

mum. Likewise for local maxima. Conversely, if
∑

i,j fij(a)v
ivj < 0 for some v, then

f(a + v) − f(a) < 0 and hence a cannot be a local minimum. ( Likewise for local
maxima.)

4 Bump functions
Unfortunately, even if the Taylor series converges, it need NOT be equal to the function
itself! Let E(t) = e−1/t when t > 0 and 0 when t ≤ 0. It turns out that E(t) is C∞

everywhere (an exercise/Lee’s book).
Theorem: There exists a smooth function χ : Rn → R that satisfies

1. 0 ≤ χ ≤ 1.

2. χ = 1 on [−1, 1]× [−1, 1] . . . [−1, 1].

3. supp(χ) is contained in [−2, 2]× [−2, 2] . . ..

We can find a function that satisfies similar properties but is instead radially symmetric.
Such functions are called bump functions.
Proof: We first construct χ for n = 1. Let ζ(t) = E(t)

E(t)+E(1−t)
. Now ζ(t) = 0 for

t ≤ 0 and ζ(t) = 1 for t ≥ 1. Let η(t) = ζ(2 + t)ζ(2 − t). This does the job when
n = 1. If we want a spherically symmetric bump function in Rm, simply define it as
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χ(x) = η(r). If we want a cylindrically symmetric bump function in Rm, simply define
it as χ(x) = η(x1)η(x2)η(x3) . . ..
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