
MA 235 - Lecture 9

1 Recap
1. Partitions-of-unity.

2. Applications - Existence of bump functions (Urysohn type) and local-smooth-
extensions (from closed subsets) implies global-smooth-extension.

2 Applications of partitions-of-unity (cont’d...)
• Existence of smooth exhaustion functions: Every smooth manifold (with or with-

out boundary) admits a smooth positive exhaustion function, i.e., a smooth func-
tion f : M → R such that f > 0, f−1((−∞, c]) is compact for all c ∈ R. ( The sets
f−1((−∞, n]) form an exhaustion.)
Proof: Let Vj be any countable pre-compact open cover. Let ψj be a smooth parti-
tion of unity subordinate to Vj . Define f =

∑
j jψj . This function is smooth and

positive (why?) If c ∈ R, choose an integer N > c. If p /∈ ∪N
j=1V̄j , then ψj(p) = 0

for all j ≤ N . Thus f(p) > c (why?). We are done (why?)

• Level sets of smooth functions (proof omitted): Let M be a smooth manifold. If
K ⊂M is closed, there is a smooth f :M → [0,∞) such that f−1(0) = K.

3 Tangent vectors and tangent spaces
Recall that we want to optimise smooth functions over manifolds. Naively, we might
expect some sort of Lagrange’s multipliers theorem but for that one might need to
make sense of vectors “tangent" to the manifold. (Recall that the gradient gives us the
normal to a regular level set.) Another reason to study tangent vectors is that suppose
we want to look at the motion of a ring on a wire or electrons on a two-dim surface
for instance, then their velocities are constrained to be “tangent" to the constraining
surfaces. What is a vector “tangent" to a sphere Sn at p ∈ Sn? Presumably it is the
velocity of a particle moving on it. In other words, a tangent vector lies on a tangent
plane but the plane keeps moving from point to point. So we have several “tangent
spaces" that vary from point to point. Unfortunately, a general manifold is not defined
as “sitting inside" RN like Sn is. So how can we define “tangent vectors"? There is a
way to do it using velocities of curves, but we shall come to it later.
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3.1 Tangent vectors through functions
The only way to “probe" a manifold is by means of smooth functions. The point of
the tangent plane/tangent vectors is to provide a linear approximation to the mani-
fold. Likewise, can we hope that tangent vectors can be deduced by knowing linear
approximations of smooth functions? For instance, inRn, the linear approximation of a
smooth function can be deduced if we know all directional derivatives. The directional
derivative Da,vf = ∂f

∂xi (a)v
i. So we can “read off" the components of tangent vec-

tors from directional derivatives of smooth functions. So what properties characterise
directional derivatives?

• A directional derivativeDa,v takes smooth functions on Rn to numbers in a linear
manner.

• But the crucial point is that functions can be multiplied. Da,v(fg) = f(a)Da,vg +
Da,vfg(a).

• Are these properties enough?

Def: A derivation D at a ∈ Rn is a linear map over R D : C∞(Rn) → R such that
D(fg) = f(a)Dg +Dfg(a).
Da,v is an example of a derivation.
Proposition: Derivations form a vector space TaRn, every derivation is of the form
D(f) = Da,vf for some v, and v → Da,v is a linear isomorphism between Rn and TaRn.
Proof: Define the vector space structure as (αD1 + βD2)f = αD1f + βD2f . Given
D, define vi = D(xi). Consider the derivation w = D − Da,v. w(xi) = 0. Moreover,
D(1.1) = 2.D(1) and hence D(1) = 0. If c is a constant, D(c) = cD(1) = 0. Moreover,
f = f(a) + ∂f

∂xi (a)(x
i − ai) + hi,j(x, a)(x

i − ai)(xj − aj) for some smooth hi,j . Thus,
w(f) = w(hi,j(x, a)(x

i − ai)(xj − aj)) which equals 0 (why?) Thus, D = Da,v. The map
v → Da,v is clearly linear (why?) and onto. Moreover, if Da,vf = 0 for all smooth f ,
then v = Da,v(x

i)ei = 0. Thus it is a linear isomorphism.
Corollary: The derivations ∂

∂xi |a defined by ∂
∂xi |af = ∂f

∂xi (a) form a basis for TaRn.

4 Tangent vectors on manifolds and pushforwards
LetM be smooth manifold (with or without boundary). A linear map w : C∞(M) → R
is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g). The set of all derivations at
p can be made into a vector space over R and is denoted as TpM (the tangent space at
p). An element of TpM is called a tangent vector at p.
Proposition (how to prove?): Suppose p ∈ M , v ∈ TpM , and f, g ∈ C∞(M). Then, if f
is constant, v(f) = 0. Moreover, if f(p) = g(p) = 0, then v(fg) = 0.

We need to connect TpM to TpRn using coordinate charts. To this end, we need to
know how smooth maps change tangent spaces. For maps between Rn, tangent space
changes can be computed using the derivative matrix which is a linear map from Rn

to itself. Unfortunately, the notion of a linear map between manifolds makes no sense.
The best we can hope for is a linear map between tangent spaces.
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LetM,N be manifolds (with or without boundary), F :M → N be a smooth map. The
pushforward/differential (F∗)p : TpM → TF (p)N of F at p is defined as the derivation
(F∗)p(v)(f) = v(f ◦ F ). (why is it a derivation?)
Properties: F∗ is linear, ((G ◦ F )∗)p = (G∗)F (p) ◦ (F∗)p, I∗ = I , and if F is a diffeo, then
(F∗)

−1
p = ((F−1)∗)F (p).

Some more properties (let M be a manifold with or without boundary):

• Locality: Suppose v ∈ TpM . If f, g ∈ C∞(M) agree on a neighbourhood U of p,
then v(f) = v(g).
Proof: Let ρ : M → R be a bump such that ρ = 1 on V ⊂ U and supp(ρ) ⊂ U .
Then ρ(f − g) = 0 on M . Now 0 = v(ρ(f − g)) = 0 + ρ(p)v(f − g) = v(f − g).

• Identification for open submanifolds: Let U ⊂ M be an open subset. Then
(i∗)p : TpU → TpM is an isomorphism for all p ∈ U .
Proof: 1-1: If (i∗)p(v) = 0, then whenever f ∈ C∞(M), and v(f∥U) = 0, then sup-
pose g ∈ C∞(U). Let ρ :M → Rbe a bump function equal to 1 in a neighbourhood
of p and supp(ρ) ⊂ U . Thus ρg : M → R agrees with f in a neighbourhood of p.
Hence v(ρg) = 0 = v(g) because ρg agrees with g in a neighbourhood of p. Thus
v = 0.
Onto: Let w ∈ TpM . Given f ∈ C∞(U), define v(f) = w(ρf). We claim
that w(ρ1f) = w(ρ2f) if ρ1, ρ2 are two bump functions around p. Indeed,
w((ρ1 − ρ2)f) = 0 because (ρ1 − ρ2)f agrees with the constant function zero in a
neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ2fg) = w(ρf)g(p) + w(ρg)f(p).
Thus v ∈ TpU and i∗(v)(f) = v(f |U) = w(ρf |U) = w(ρf).
Since this isomorphism is independent of choices, we abuse notation and identify
TpU with TpM without mentioning the same.

• Dimension: If M is an n-dimensional manifold (without boundary), then TpM is
n-dimensional. ( This is applicable even to interior points on manifolds-with-
boundary.)
Proof: Let (ϕ, U) be a coordinate chart around p. Then (ϕ∗)p : TpU = TpM →
Tϕ(p)(ϕ(U)) = Tϕ(p)Rn = Rn is an isomorphism.

Unfortunately, this theorem cannot be directly applied to the boundary points on
manifolds-with-boundary. ( Because Hn is not an open subset of Rn.) So what is the
dimension of TpM for a boundary point? Is it n or n− 1? ( Spoiler alert: It is n.)
For any a ∈ ∂Hn, (i∗)a : TaHn → TaRn is an isomorphism.
Proof: 1-1: Let v ∈ TaHn such that i∗v = 0, and f ∈ C∞(Hn). Let f̃ be a smooth
extension to Rn. Now 0 = i∗v(f̃) = v(f̃ ◦ i) = v(f).
Onto: Let w = wi ∂

∂xi ∈ TaRn. Let f ∈ C∞(Hn). Define f̃ as a smooth extension of f to
Rn and v(f) = w(f̃) = wi ∂f̃

∂xi (a) = and is hence independent of the choice of f̃ (because
of continuity). v is a derivation and hence we are done.
Corollary: The dimension of TpM even for manifolds-with-boundary is dim(M).
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