
MA 235 - Lecture 26

1 Recap
1. Examples of orientable and non-orientable manifolds. In particular, hypersur-

faces admitting nowhere vanishing non-tangent vector fields and ∂M (two ori-
entations that agree with each other when the dimension of M is even).

2. Change of integrals of top forms under diffeomorphisms.

2 Orientation and integration of top forms
Let ω be a top form on an oriented manifold-with-boundary M that is compactly
supported in a chart (U, ϕ). Then

∫
M
ω := ±

∫
ϕ(U)

(ϕ−1)∗ω depending on whether ϕ
is orientation-preserving ( [ϕ∗(dx1 ∧ . . .)] = [ω̃|U ] where ω̃ is an orientation form) or
reversing.
Proposition: This definition is independent of (U, ϕ).
Proof: Suppose (V, ψ) is another chart. Then

∫
ϕ(U)

(ϕ−1)∗ω =
∫
ϕ(U∩V )

(ϕ−1)∗ω. Now
ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a diffeo. From the above results we are done.
Def: Let M be an oriented manifold-with-boundary. Let ω be a compactly supported
top form. Let Ui be a finite coordinate open cover of supp(ω) ( the charts need not
have positive orientation). Let ρi be a partition-of-unity subordinate to Ui. Then∫
M
ω :=

∑
i

∫
ρiω. ( We allow for negatively oriented charts too to care of the 1-

dimensional case.)

Proposition: The above definition is independent of the choice of the partition-of-
unity.
Proof: Suppose Vj is another open cover, and ρ′j is another partition-of-unity. Then∑

i

∫
ρiω =

∑
i

∫ ∑
j ρiρ

′
jω =

∑
i±

∫
ϕi(Ui)

∑
j(ϕ

−1
i )∗(ρiρ

′
jω)which by linearity of the inte-

gral is
∑

i

∑
j ±

∫
ϕi(Ui)

(ϕ−1
j )∗(ρiρ

′
jω) =

∑
i

∑
j ±

∫
ψj(Vj)

(ψ−1
j )∗(ρiρ

′
jω) =

∑
j

∫
ψj(Vj)

(ψ−1
j )∗(

∑
i ρiρ

′
jω) =∑

j

∫
M
ρ′jω.

For 0-dimensional oriented manifolds, i.e., a discrete collection of points, the “integral"
of a compactly supported function f is defined to be

∑
±f(p) where the signs are

decided by the orientation. If S ⊂ M is a submanifold, and ω is an n − 1 form, then∫
S
ω is understood to be with respect to the induced orientation ( if an N⃗ is chosen).

Likewise for
∫
∂M

ω ( with the outward normal).

Properties (can be proven directly):
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• Linearity.

• Orientation reversal.

• Positivity.

• Diffeomorphism invariance (upto orientation).

Practically speaking... suppose D ⊂ R2 is the unit disc (with orientation dx ∧ dy)
and ω = x2dx ∧ dy is a smooth 2-form on D̄. Then how can we calculate

∫
D̄
ω? The

problem is that we have to use a partition-of-unity and such things are practically
impossible to integrate explicitly! If we were to do it naively, we would have simply
done

∫
x2+y2≤1

x2dxdy =
∫ 2π

0

∫ 1

0
r2 cos2(θ)rdrdθ.

To relate these two, here is a proposition: Let ω be a compactly supported top
form on M . Let D1, . . . , Dk be domains of integration in Rn and Fi : D̄i → M be
smooth maps that restrict to orientation-preserving diffeos on Di, F (Di) ∩ F (Dj) = ϕ,
supp(ω) ⊂ F (D̄1) ∪ F (D̄2) . . .. Then

∫
M
ω =

∑
i

∫
Di
F ∗
i ω.

Before proving it, note that the identity map does the trick for D ⊂ R2 above. Thus∫
D
ω =

∫
x2+y2<1

x2dxdy.
Proof: As above, assume WLOG that ω is supported in a single relatively compact
chart (U, ϕ). Let supp(ω) ⊂ V ⊂ V̄ ⊂ U be such that ∂V has measure zero. Note that
ϕ(∂(V ∩ Fi(Di))) has measure zero in Rn: Indeed, smooth maps between Rn and itself
take measure zero sets to measure zero sets (why?). Moreover, ϕ(V ∩ Fi(Di)) cover
ϕ(supp(ω)) upto measure zero sets and are pairwise disjoint.
Thus

∫
M
ω = ±

∫
ϕ(U)

(ϕ−1)∗ω = ±
∑

i

∫
ϕ(U∩Fi(Di))

(ϕ−1)∗ω =
∑

i

∫
Di
F ∗
i ω (why?)

Actually, one does not need Fi to extend smoothly to D̄i. Lipschitz (or even weaker -
Hölder) extensions are enough.
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