1 Recap

1. Topology of \mathbb{R}^{n} and invariance of domain.
2. Continuity, differentiability, chain rule.
3. Gradient, first derivative test, global extrema.

2 Review of multivariable calculus

Higher derivatives: It is of course possible that a function is differentiable and the derivative is continuous, and all the second partials exist but it is not twice-differentiable. Here is an even weirder example : $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. By properties, f is differentiable on $\mathbb{R}^{2}-\{(0,0)\}$. At $(0,0)$ we claim that it is differentiable and the gradient is $0:|f(x, y)-0-0|=|x y| \frac{\left|x^{2}-y^{2}\right|}{x^{2}+y^{2}} \leq x^{2}+y^{2}$ (why ?) Therefore, if $\sqrt{x^{2}+y^{2}}<\epsilon$, we are done (Why ?) Now $f_{x}=\frac{y\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+2 x^{2} y\left(x^{2}+y^{2}\right)-2 x^{2} y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=$ $y \frac{x^{4}-y^{4}-4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, f_{y}=-x \frac{y^{4}-x^{4}-4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ away from $(0,0)$. Thus f_{x}, f_{y} are continuous throughout. However, $f_{x y}=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=1$ and $f_{y x}=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=-1$. Therefore, $f_{x y} \neq f_{y x}$ in general !
Theorem (Clairaut) : If all the second partials exist and are continuous are a, then the mixed partials are equal.

A function is called C^{2} if $D F$ is differentiable and $D^{2} F$ is continuous (and likewise for $\left.C^{k}\right)$. Notation: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ is a multi-index, often $\alpha!:=\alpha_{1}!\alpha_{2}!\ldots$, and $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots . \partial_{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial\left(x^{1}\right)^{\alpha_{1}} \partial\left(x^{2}\right)^{\alpha_{2}} \ldots}$. If a function is C^{k} for all k, it is said to be C^{∞} or smooth.
Proof of Clairaut: We will prove it for two-variable functions. The general case follows from this special case (why?) Let $u(h, k)=f(a+h, b+k)-f(a+h, b), v(h, k)=$ $f(a+h, b+k)-f(a, b+k)$, and $w(h, k)=f(a+h, b+k)-f(a+h, b)-f(a, b+k)-f(a, b)$. Now, $w(h, k)=u(h, k)-u(0, k)=h \partial_{x} u\left(c_{1}, k\right)$ by MVT for $c_{1} \in[0, h]$. This equals $h\left(\partial_{x} f\left(a+c_{1}, b+k\right)-\partial_{x} f\left(a+c_{1}, b\right)\right)=h k \partial_{y} \partial_{x} f\left(a+c_{1}, b+c_{2}\right)$ where $c_{2} \in[0, k]$. Likewise, $w(h, k)=v(h, k)-v(h, 0)=h k \partial_{x} \partial_{y} f\left(a+d_{1}, b+d_{2}\right)$ where $d_{1} \in[0, h], d_{2} \in[0, k]$. Dividing by $h k$, we see that $\partial_{y} \partial_{x} f\left(a+c_{1}, b+c_{2}\right)=\partial_{x} \partial_{y} f\left(a+d_{1}, b+d_{2}\right)$. By assumption of continuity of the second partials, there exists a $\delta>0$ such that $\left|\partial_{y} \partial_{x} f\left(a+c_{1}, b+c_{2}\right)-\partial_{y} \partial_{x} f(a, b)\right|<\frac{\epsilon}{2}$, and $\left|\partial_{x} \partial_{y} f\left(a+d_{1}, b+d_{2}\right)-\partial_{x} \partial_{y} f(a, b)\right|<\frac{\epsilon}{2}$ whenever $|(h, k)|<\delta$ (why ?). Thus, $\left|f_{x y}(a, b)-f_{y x}(a, b)\right|<\epsilon$ for all $\epsilon>0$. We are done.
Using the C^{2} Clairaut, we can prove the C^{k} Clairaut for any k.
Theorem 1 (Taylor). Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$ be a C^{k} function on U. Let $a \in U$ and $|h|<\epsilon$ such that $B_{a}(\epsilon) \subset U$. Then the polynomial $p_{a, k}(h)=f(a)+\sum_{i} \frac{\partial f}{\partial x_{i}}(a) h+$ $\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a) h_{i} h_{j}+\ldots+\sum_{\|\alpha\|=k} \frac{D^{\alpha} f(a)}{\alpha!} h^{\alpha}$ is the unique polynomial of degree $\leq k$ (degree meaning the maximum sum of powers) such that $\lim _{h \rightarrow 0} \frac{f(a+h)-p_{k, a}(h)}{|h|^{k}}=0$. Moreover, if f is C^{k+1}, then $f(a+h)=p_{k, a}(h)+\sum_{|\alpha|=k+1} \frac{D^{\alpha} f(\eta) h^{\alpha}}{\alpha!}$, where η lies in $B_{a}(h)$.
Proof. Uniqueness is easy and left as an exercise. Let $h \neq 0$ (if it is equal to 0 , we are done). Consider the one-variable function $q(t)=f\left(a+t \frac{h}{\|h\|}\right)$ on $|t|<\epsilon$. This function
is C^{k} (because it is a composition of C^{k} functions). Thus we can apply the one-variable Taylor theorem to it to conclude that $q(\|h\|)=q(0)+q^{\prime}(0)\|h\|+\ldots$..
Now we claim inductively that $\frac{q^{(m)}(t)\|h\|^{m}}{m!}=\sum_{|\alpha|=m} \frac{D^{\alpha} f\left(a+t \frac{h}{h \|}\right) h^{\alpha}}{\alpha!}$:
Indeed, for $m=1$ we are done by the Chain rule. Assume the truth of this statement for $1,2 \ldots, m-1$. We apply the induction hypothesis to $q^{(m-1)}(t)$ to conclude that $\frac{q^{(m)}(t)\|h\|^{m}}{m!}=\frac{\|h\|}{m} \sum_{|\alpha|=m-1} \frac{d}{d t} \frac{D^{\alpha} f\left(a+t \frac{h}{\|n\|}\right) h^{\alpha}}{\alpha!}=\sum_{|\alpha|=m-1} \sum_{i} \frac{\partial_{x_{i}} D^{\alpha} f\left(a+t \frac{h}{\|h\|}\right) h_{i} h^{\alpha}}{\alpha!m}=$

Given i such that $\beta_{i} \geq 1$, every multi-index vector β can be written uniquely as $\beta=\alpha+e_{i}$ where $|\alpha|=m-1$. However, this can be done for each such i. Hence, if we fix β, then $\frac{1}{\alpha!m}=\frac{\alpha_{i}+1=\beta_{i}}{\beta!m}$ and if we sum over all i giving rise to the same β, then we get $\sum_{i} \frac{\beta_{i}}{\beta!m}=\frac{1}{\beta!}$. Hence these two expressions are the same, and we are done.

Now the one-variable Taylor theorem, i.e., the following theorem, completes the proof.
Theorem 2. Let $U \subset \mathbb{R}$ be an open set and $f: U \rightarrow \mathbb{R} a C^{k}$ function on U. Let $a \in U$ and $|h|<\epsilon$ such that $(a-\epsilon, a+\epsilon) \in U$. Then the polynomial $p_{k, a}(h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2!}+$ $\ldots+\frac{f^{(k)}(a) h^{k}}{k!}$ is the unique polynomial of degree $\leq k$ such that $\lim _{h \rightarrow 0} \frac{f(a+h)-p_{k, a}(h)}{h^{k}}=0$. Moreover, if f is C^{k+1}, then $f(a+h)=p_{k, a}(h)+\frac{f^{(k+1)}(\eta) h^{k+1}}{(k+1)!}$, where η lies between a and $a+h$.

The second derivative test: Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}$ be a C^{1} function. Suppose f is C^{2} at $a \in U$ and $D f_{a}=0$.
Theorem: If $\sum_{i, j} f_{i j}(a) v^{i} v^{j}>0$ for all $v \neq 0$, then a is a local minimum. If $\sum_{i, j} f_{i j}(a) v^{i} v^{j}<$ 0 for all $v \neq 0$, then a is a local maximum. Conversely, if a is a local minimum $\sum_{i, j} f_{i j}(a) v^{i} v^{j} \geq 0$ for all v (and likewise for a local max).
Proof: Taylor's theorem (with the Peano form of the remainder) implies that if $\sum_{i, j} f_{i j}(a) v^{i} v^{j}>0, f(a+v)-f(a)>0$ for all small v. Thus a is a local minimum. Likewise for local maxima. Conversely, if $\sum_{i, j} f_{i j}(a) v^{i} v^{j}<0$ for some v, then $f(a+v)-f(a)<0$ and hence a cannot be a local minimum. (Likewise for local maxima.)

The matrix $f_{i j}$ is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i, j} v_{i} f_{i j}(a) v_{j} \geq 0 \forall v \neq 0$. Often, optimization studies convex functions. In general, given a symmetric $n \times n$ real matrix A, i.e., $A^{T}=A$, i.e., $A_{i j}=A_{j i}$, it is said to be positive-definite if $\sum_{i, j} A_{i j} v_{i} v_{j}>0$ for all $v \neq 0$, i.e., $v^{T} A v>0$ for all $v \neq 0$. This condition is somewhat subtle. For 2×2 matrices, $A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$, supposing $v^{T}=(x, y)$, we see that $v^{T} A v=a x^{2}+d y^{2}+2 b x y$. This expression is positive for all $(x, y) \neq(0,0)$ if and only $a>0$ and $a d-b^{2}=\operatorname{det}(A)>0$. (Why ?) Similar but more complicated conditions exist for $n \times n$ matrices. (Positive-definiteness is the same as having only positive eigenvalue by the way.)

Example: Find local extrema of $f(x, y)=x^{2}-y^{2}$ on $\mathbb{R}^{2}: \nabla f=(2 x,-2 y)=(0,0)$ only at the origin. The Hessian is $\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$. So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (and none of the eigenvalues being zero)). There is a direction in which f increases and a direction in which it decreases. Such points are called "Saddle points". More generally, the eigenvectors and eigenvalues of the Hessian tell us about these "principal" directions.

