
1 Recap
1. Topology of Rn and invariance of domain.

2. Continuity, differentiability, chain rule.

3. Gradient, first derivative test, global extrema.

2 Review of multivariable calculus
Higher derivatives: It is of course possible that a function is differentiable and the
derivative is continuous, and all the second partials exist but it is not twice-differentiable.
Here is an even weirder example : f(x, y) = xy(x2−y2)

x2+y2
for (x, y) ̸= (0, 0) and f(0, 0) = 0.

By properties, f is differentiable on R2 − {(0, 0)}. At (0, 0) we claim that it is differen-
tiable and the gradient is 0 : |f(x, y)− 0− 0| = |xy| |x

2−y2|
x2+y2

≤ x2 + y2 (why ?) Therefore,
if
√
x2 + y2 < ϵ, we are done (Why ?) Now fx = y(x2−y2)(x2+y2)+2x2y(x2+y2)−2x2y(x2−y2)

(x2+y2)2
=

y x4−y4−4x2y2

(x2+y2)2
, fy = −xy4−x4−4x2y2

(x2+y2)2
away from (0, 0). Thus fx, fy are continuous through-

out. However, fxy = limh→0
fy(h,0)−fy(0,0)

h
= 1 and fyx = limh→0

fx(0,h)−fx(0,0)
h

= −1.
Therefore, fxy ̸= fyx in general !
Theorem (Clairaut) : If all the second partials exist and are continuous are a, then the
mixed partials are equal.

A function is called C2 if DF is differentiable and D2F is continuous ( and likewise
for Ck). Notation: If α = (α1, α2, . . . , αk) is a multi-index, often α! := α1!α2! . . ., and
|α| = α1 + α2 + . . .. ∂αf = ∂|α|f

∂(x1)α1∂(x2)α2 ...
. If a function is Ck for all k, it is said to be C∞

or smooth.
Proof of Clairaut: We will prove it for two-variable functions. The general case fol-
lows from this special case (why?) Let u(h, k) = f(a+ h, b+ k)− f(a+ h, b), v(h, k) =
f(a+h, b+k)−f(a, b+k), andw(h, k) = f(a+h, b+k)−f(a+h, b)−f(a, b+k)−f(a, b).
Now, w(h, k) = u(h, k) − u(0, k) = h∂xu(c1, k) by MVT for c1 ∈ [0, h]. This equals
h(∂xf(a+ c1, b+k)−∂xf(a+ c1, b)) = hk∂y∂xf(a+ c1, b+ c2) where c2 ∈ [0, k]. Likewise,
w(h, k) = v(h, k)−v(h, 0) = hk∂x∂yf(a+d1, b+d2)where d1 ∈ [0, h], d2 ∈ [0, k]. Dividing
byhk, we see that ∂y∂xf(a+c1, b+c2) = ∂x∂yf(a+d1, b+d2). By assumption of continuity
of the second partials, there exists a δ > 0 such that |∂y∂xf(a+c1, b+c2)−∂y∂xf(a, b)| < ϵ

2
,

and |∂x∂yf(a + d1, b + d2) − ∂x∂yf(a, b)| < ϵ
2

whenever |(h, k)| < δ (why ?). Thus,
|fxy(a, b)− fyx(a, b)| < ϵ for all ϵ > 0. We are done.
Using the C2 Clairaut, we can prove the Ck Clairaut for any k.

Theorem 1 (Taylor). Let U ⊂ Rn be an open set and f : U → R be a Ck function on U . Let
a ∈ U and |h| < ϵ such that Ba(ϵ) ⊂ U . Then the polynomial pa,k(h) = f(a) +

∑
i

∂f
∂xi

(a)h+
1
2

∑
i,j

∂2f
∂xi∂xj

(a)hihj + . . .+
∑

∥α∥=k
Dαf(a)

α!
hα is the unique polynomial of degree ≤ k (degree

meaning the maximum sum of powers) such that limh→0
f(a+h)−pk,a(h)

|h|k = 0. Moreover, if f is
Ck+1, then f(a+ h) = pk,a(h) +

∑
|α|=k+1

Dαf(η)hα

α!
, where η lies in Ba(h).

Proof. Uniqueness is easy and left as an exercise. Let h ̸= 0 (if it is equal to 0, we are
done). Consider the one-variable function q(t) = f(a + t h

∥h∥) on |t| < ϵ. This function



is Ck (because it is a composition of Ck functions). Thus we can apply the one-variable
Taylor theorem to it to conclude that q(∥h∥) = q(0) + q′(0)∥h∥+ . . ..
Now we claim inductively that q(m)(t)∥h∥m

m!
=

∑
|α|=m

Dαf(a+t h
∥h∥ )h

α

α!
:

Indeed, for m = 1 we are done by the Chain rule. Assume the truth of this state-
ment for 1, 2 . . . ,m − 1. We apply the induction hypothesis to q(m−1)(t) to con-
clude that q(m)(t)∥h∥m

m!
= ∥h∥

m

∑
|α|=m−1

d
dt

Dαf(a+t h
∥h∥ )h

α

α!
=

∑
|α|=m−1

∑
i

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
=∑

i

∑
|α|=m−1

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
. We want to compare the last expression to

∑
|β|=m

Dβf(a+t h
∥h∥ )h

β

β!
.

Given i such that βi ≥ 1, every multi-index vector β can be written uniquely as
β = α+ ei where |α| = m− 1. However, this can be done for each such i. Hence, if we
fix β, then 1

α!m
= αi+1=βi

β!m
and if we sum over all i giving rise to the same β, then we get∑

i
βi

β!m
= 1

β!
. Hence these two expressions are the same, and we are done.

Now the one-variable Taylor theorem, i.e., the following theorem, completes the
proof.
Theorem 2. Let U ⊂ R be an open set and f : U → R a Ck function on U . Let a ∈ U and
|h| < ϵ such that (a− ϵ, a+ ϵ) ∈ U . Then the polynomial pk,a(h) = f(a) + f ′(a)h+ f ′′(a)h2

2!
+

. . . + f (k)(a)hk

k!
is the unique polynomial of degree ≤ k such that limh→0

f(a+h)−pk,a(h)

hk = 0.
Moreover, if f is Ck+1, then f(a + h) = pk,a(h) +

f (k+1)(η)hk+1

(k+1)!
, where η lies between a and

a+ h.

The second derivative test: Let U ⊂ Rn be open and f : U → R be a C1 function.
Suppose f is C2 at a ∈ U and Dfa = 0.
Theorem: If

∑
i,j fij(a)v

ivj > 0 for all v ̸= 0, thena is a local minimum. If
∑

i,j fij(a)v
ivj <

0 for all v ̸= 0, then a is a local maximum. Conversely, if a is a local minimum∑
i,j fij(a)v

ivj ≥ 0 for all v ( and likewise for a local max).
Proof: Taylor’s theorem ( with the Peano form of the remainder) implies that if∑

i,j fij(a)v
ivj > 0, f(a + v) − f(a) > 0 for all small v. Thus a is a local mini-

mum. Likewise for local maxima. Conversely, if
∑

i,j fij(a)v
ivj < 0 for some v, then

f(a + v) − f(a) < 0 and hence a cannot be a local minimum. ( Likewise for local
maxima.)

The matrix fij is called the ‘Hessian’ matrix of f . For future purposes a twice
differentiable function whose second partials are continuous is said to be convex if∑

i,j vifij(a)vj ≥ 0 ∀ v ̸= 0. Often, optimization studies convex functions. In general,
given a symmetric n × n real matrix A, i.e., AT = A, i.e., Aij = Aji, it is said to be
positive-definite if

∑
i,j Aijvivj > 0 for all v ̸= 0, i.e., vTAv > 0 for all v ̸= 0. This

condition is somewhat subtle. For 2× 2 matrices, A =

[
a b
b d

]
, supposing vT = (x, y),

we see that vTAv = ax2 + dy2 + 2bxy. This expression is positive for all (x, y) ̸= (0, 0)
if and only a > 0 and ad − b2 = det(A) > 0. (Why ?) Similar but more complicated
conditions exist for n × n matrices. ( Positive-definiteness is the same as having only
positive eigenvalues by the way.)
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Example: Find local extrema of f(x, y) = x2 − y2 on R2 : ∇f = (2x,−2y) = (0, 0)

only at the origin. The Hessian is
[
2 0
0 −2

]
. So the origin is neither a local max nor a

local min (despite the second derivative being non-zero ! ( and none of the eigenvalues
being zero)). There is a direction in which f increases and a direction in which it
decreases. Such points are called “Saddle points". More generally, the eigenvectors
and eigenvalues of the Hessian tell us about these “principal" directions.
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