MA 235 - Lecture 17

1 Recap

1. Tangent bundle.
2. Vector bundles (examples).

3. Smooth sections.

Def: Let V, W be vector bundles over M. A smooth map 7' : V — W is called a
vector bundle map/morphism if 7' commutes with the projections, i.e., T" takes V,, into
W, for all p € M and does so linearly. If 'is 1 — 1 and T~ 1is also smooth, then 7! is
also a vector bundle morphism. Such a 7' is called an isomorphism between I and W.
Non-example: The Mébius bundle is not isomorphic to S* x R. T'S? is not isomorphic
to S? x R% On the other hand, T'S* is isomorphic to S* x R.

Example: There is always an isomorphism / : ' — V given by I(v) = v.

Def: Let S C V be a vector bundle such that the inclusion map is an embedding and a
1 — 1 vector bundle map. Then S is said to be a subbundle of V.

Let V' be a vector bundle over M. Consider the set V* = U,V *. We can make V*
into a smooth vector bundle over M as well ( called the dual bundle of V). Indeed,
cover M by means of coordinate charts (U,, x,) such that V is trivial over U,. Let T, :
7Y U,) — U, X R” be a local trivialisation for V. Consider the sections s; , = T, ' (e;).
Take the dual smoothly varying basis (s},)* defined as (s},)'(p)(5a4,;(p)) = d;. Consider
the map L, : U x R" — V* given by L, (p, ¥) = v;(s)". This map is a bijection. Define
a topology on V* by the same construction as for 7M. By the same reasoning, V* with
such a topology is Hausdorff and second-countable. Similar to 7'M, it has a countable
collection of coordinate charts making it into a smooth manifold. These charts are
induced from L, which actually make them local trivialisations.

This construction applied to 7'M produces a vector bundle 7*M known as the
cotangent bundle. The smooth sections of 7*M are called 1-form fields.

2 Vector fields and flows

Recall that the point of defining vector fields/tangent bundle was to model the flow of
fluids along a manifold.

Def: Let M be a smooth manifold with or without boundary. Let J C R be an in-
terval containing 0 in its interior. Let X be a smooth vector field on M. An integral
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curve for X starting at p € M is a smooth path v : J — M such that v(0) = p and
V() =X({t) Ve

Examples:

* The constant vector field in R™: Let X = ¢’;2: on R". The integral curve starting
at p'is p'+ ¢t (why?) Note that if we fix ¢, then p’ — p'+ ¢t is a diffeomorphism of
R™!

* Rotational vector field in R*: X = (y, —z). Now ‘fl—f =y, % = —xz. Thus % =

—z, ‘%’ = —y. Hencex = Acos(t)+Bsin(t),y = 2’ = —Asin(t)+ B cos(t). Att =0,
xo = A,yo = B. Fixing t, (x¢, yo) — (zo cos(t) + yo sin(t), —zo sin(t) + yo cos(t)) is a

diffeo of R?!

o Incomplete vector field in R? — {0}: Consider the constant vector field X = 2 in
R? — {0}. The integral curve for say (—1,0) does not exist at ¢ = 1! Such a vector
field ( that has at least one integral curve that does not exist for all time) is called
an incomplete vector field.

* A vector field that blows up in finite-time in R% X = 222. Note that & =
22, % = 0. Hence, z = 5,y = 4. In other words, it blows up in finite time! (

Incomplete vector field.)

* A compactly supported vector field in R": Let X be any smooth vector field. Let
p be a smooth compactly supported function. Then pX is a compactly supported
vector field. For any starting point outside the support, the integral curve is a
constant!

Theorem (Existence of integral curves): Let X be a smooth vector field on a mani-
fold M (without boundary). For every p € M, there exists a neighbourhood U, C M
and ¢, > 0 such that for every ¢ € U,, there is a unique smooth integral curve
v i (—€p, ) = M for X starting at ¢.

This theorem follows almost immediately from the existence/uniqueness/smooth-
dependence-on-initial-parameters theorem for (time-independent) systems of ODE.
That theorem is proven by rewriting the system as an integral equation and using an
iterative method and the contraction mapping principle. For uniqueness and smooth-
ness, one needs to put in more effort (Gronwall’s inequality). The ¢, can be finite and
U, need not be all of M.

Lety : J — M be asmooth integral curve. Then# : J — M givenby 7(t) = y(at) where
a € Ris an integral curve for a.X startingatp. ¥: J —b— M givenby §(t) = y(t +b) is
an integral curve for X. Suppose M, N are smooth manifolds, F' : M — N is a smooth
map, and X is a smooth vector field on M. Unfortunately, there need not be a smooth
vector field on N that is a “pushforward" of X (why?) If Fis a diffeo, then one can talk
of pushforwards of vector fields. However, if Y is a smooth vector field on N such that
Yrp) = (Fy)p(X,) forallp € M (thenY and X are said to be F-related), then whenever
7 is an integral curve for X, F' o v is an integral curve for Y (why?)



Theorem (Flows of compactly supported vector fields): Every smooth compactly
supported vector field X is complete. In particular, any smooth vector field on a com-
pact manifold is complete.

Proof: Let p be a starting point. Let 7" be the supremum of all e such that the integral
curve exists on (—e, €). If ' < oo, then firstly p is within the support of X (why?). Sec-
ondly, consider a sequence ¢, — 7. Then both the sequences ¢, = v(—t,),r, = Y(t,)
are within a compact set - in fact, the support of X (why?). Hence there are conver-
gent subsequences ( that we still call ¢,, r,, abusing notation). So ¢,, = ¢ and r,, — r.
Now integral curves exist with ¢, r as starting points for some time. Hence, there are
two integral curves starting at ¢, 7, (for some large n). By uniqueness, they coincide.
Hence, the integral curve can be smoothly extended past 7. A contradiction. O

Theorem: If X is compactly supported, then # : R x M given by 6,(p) = ~(t) where
7 is the integral curve of X starting from p ( this map is called the time-¢ flow of X) is
smooth and a diffeomorphism for each fixed ¢t. Moreover, §,,, = 6,005 and 0_, = 6, L
( Such a collection of diffeomorphisms is a called a one-parameter group.)
Proof: The smoothness follows from local-smooth-dependence-on-initial-conditions.
Now if we prove that §_, = 0, ! then 6, is a diffeo. Indeed, 6, is identity. If we prove
that 6, = 0, o 6, we are done. This follows from uniqueness (why?) O
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