
MA 235 - Lecture 17

1 Recap
1. Tangent bundle.

2. Vector bundles (examples).

3. Smooth sections.

Def: Let V,W be vector bundles over M . A smooth map T : V → W is called a
vector bundle map/morphism if T commutes with the projections, i.e., T takes Vp into
Wp for all p ∈ M and does so linearly. If T is 1− 1 and T−1 is also smooth, then T−1 is
also a vector bundle morphism. Such a T is called an isomorphism between V and W .
Non-example: The Möbius bundle is not isomorphic to S1 × R. TS2 is not isomorphic
to S2 × R2. On the other hand, TS1 is isomorphic to S1 × R.
Example: There is always an isomorphism I : V → V given by I(v) = v.
Def: Let S ⊂ V be a vector bundle such that the inclusion map is an embedding and a
1− 1 vector bundle map. Then S is said to be a subbundle of V .
Let V be a vector bundle over M . Consider the set V ∗ = ∪pV

∗
p . We can make V ∗

into a smooth vector bundle over M as well ( called the dual bundle of V ). Indeed,
cover M by means of coordinate charts (Uα, xα) such that V is trivial over Uα. Let Tα :
π−1(Uα) → Uα × Rr be a local trivialisation for V . Consider the sections si,α = T−1

α (ei).
Take the dual smoothly varying basis (s∗α)

i defined as (s∗α)
i(p)(sα,j(p)) = δij . Consider

the map Lα : U × Rr → V ∗ given by Lα(p, v⃗) = vi(s
∗
α)

i. This map is a bĳection. Define
a topology on V ∗ by the same construction as for TM . By the same reasoning, V ∗ with
such a topology is Hausdorff and second-countable. Similar to TM , it has a countable
collection of coordinate charts making it into a smooth manifold. These charts are
induced from Lα which actually make them local trivialisations.

This construction applied to TM produces a vector bundle T ∗M known as the
cotangent bundle. The smooth sections of T ∗M are called 1-form fields.

2 Vector fields and flows
Recall that the point of defining vector fields/tangent bundle was to model the flow of
fluids along a manifold.
Def: Let M be a smooth manifold with or without boundary. Let J ⊂ R be an in-
terval containing 0 in its interior. Let X be a smooth vector field on M . An integral
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curve for X starting at p ∈ M is a smooth path γ : J → M such that γ(0) = p and
γ′(t) = X(γ(t)) ∀ t ∈ J .

Examples:

• The constant vector field in Rn: Let X = ci ∂
∂xi on Rn. The integral curve starting

at p⃗ is p⃗ + c⃗t (why?) Note that if we fix t, then p⃗ → p⃗ + c⃗t is a diffeomorphism of
Rn!

• Rotational vector field in R2: X = (y,−x). Now dx
dt

= y, dy
dt

= −x. Thus d2x
dt2

=

−x, d
2y
dt2

= −y. Hencex = A cos(t)+B sin(t), y = x′ = −A sin(t)+B cos(t). At t = 0,
x0 = A, y0 = B. Fixing t, (x0, y0) → (x0 cos(t) + y0 sin(t),−x0 sin(t) + y0 cos(t)) is a
diffeo of R2!

• Incomplete vector field in R2 − {0}: Consider the constant vector field X = ∂
∂x

in
R2 − {0}. The integral curve for say (−1, 0) does not exist at t = 1! Such a vector
field ( that has at least one integral curve that does not exist for all time) is called
an incomplete vector field.

• A vector field that blows up in finite-time in R2: X = x2 ∂
∂x

. Note that dx
dt

=

x2, dy
dt

= 0. Hence, x = x0

1−x0t
, y = y0. In other words, it blows up in finite time! (

Incomplete vector field.)

• A compactly supported vector field in Rn: Let X be any smooth vector field. Let
ρ be a smooth compactly supported function. Then ρX is a compactly supported
vector field. For any starting point outside the support, the integral curve is a
constant!

Theorem (Existence of integral curves): Let X be a smooth vector field on a mani-
fold M (without boundary). For every p ∈ M , there exists a neighbourhood Up ⊂ M
and ϵp > 0 such that for every q ∈ Up, there is a unique smooth integral curve
γ : (−ϵp, ϵp) → M for X starting at q.
This theorem follows almost immediately from the existence/uniqueness/smooth-
dependence-on-initial-parameters theorem for (time-independent) systems of ODE.
That theorem is proven by rewriting the system as an integral equation and using an
iterative method and the contraction mapping principle. For uniqueness and smooth-
ness, one needs to put in more effort (Gronwall’s inequality). The ϵp can be finite and
Up need not be all of M .
Let γ : J → M be a smooth integral curve. Then γ̃ : J̃ → M given by γ̃(t) = γ(at)where
a ∈ R is an integral curve for aX starting at p. γ̃ : J − b → M given by γ̃(t) = γ(t+ b) is
an integral curve for X . Suppose M,N are smooth manifolds, F : M → N is a smooth
map, and X is a smooth vector field on M . Unfortunately, there need not be a smooth
vector field on N that is a “pushforward" of X (why?) If F is a diffeo, then one can talk
of pushforwards of vector fields. However, if Y is a smooth vector field on N such that
YF (p) = (F∗)p(Xp) for all p ∈ M ( then Y and X are said to be F -related), then whenever
γ is an integral curve for X , F ◦ γ is an integral curve for Y (why?)
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Theorem (Flows of compactly supported vector fields): Every smooth compactly
supported vector field X is complete. In particular, any smooth vector field on a com-
pact manifold is complete.
Proof: Let p be a starting point. Let T be the supremum of all ϵ such that the integral
curve exists on (−ϵ, ϵ). If T < ∞, then firstly p is within the support of X (why?). Sec-
ondly, consider a sequence tn → T . Then both the sequences qn = γ(−tn), rn = γ(tn)
are within a compact set - in fact, the support of X (why?). Hence there are conver-
gent subsequences ( that we still call qn, rn abusing notation). So qn → q and rn → r.
Now integral curves exist with q, r as starting points for some time. Hence, there are
two integral curves starting at qn, rn (for some large n). By uniqueness, they coincide.
Hence, the integral curve can be smoothly extended past T . A contradiction.

Theorem: If X is compactly supported, then θ : R×M given by θt(p) = γ(t) where
γ is the integral curve of X starting from p ( this map is called the time-t flow of X) is
smooth and a diffeomorphism for each fixed t. Moreover, θt+s = θt ◦ θs and θ−t = θ−1

t .
( Such a collection of diffeomorphisms is a called a one-parameter group.)
Proof: The smoothness follows from local-smooth-dependence-on-initial-conditions.
Now if we prove that θ−t = θ−1

t , then θt is a diffeo. Indeed, θ0 is identity. If we prove
that θt+s = θt ◦ θs, we are done. This follows from uniqueness (why?)
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