## MA 235 - Lecture 27

## 1 Recap

1. Integration of top forms (definition).
2. Practical calculation by covering with charts from $\mathbb{R}^{n}$ upto measure zero. Here we can do better than the theorem stated in the last class: Let $\omega$ be a compactly supported top form on $M$. Let $D_{1}, \ldots, D_{k}$ be bounded domains of integration in $\mathbb{R}^{n}$ and $F_{i}: \bar{D}_{i} \rightarrow M$ be continuous maps that restrict to orientation-preserving diffeos on $D_{i}, F_{i}\left(D_{i}\right) \cap F_{j}\left(D_{j}\right)=\phi, \operatorname{supp}(\omega) \subset F_{1}\left(\bar{D}_{1}\right) \cup F_{2}\left(\bar{D}_{2}\right) \ldots, F_{i}\left(\bar{D}_{i}\right)-F\left(D_{i}\right)$ is of measure zero in the manifold for all $i$. Then $\int_{M} \omega=\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$ if the right-hand-side is Lebesgue integrable.
Proof: As before, it is enough to assume that $\omega$ is compactly supported in a chart $U$. Thus, we have reduced our problem to an open subset in $\mathbb{R}^{n}$ (after throwing out the measure zero boundary in $\mathbb{H}^{n}$ ). Since the boundaries are of measure zero, the integral is $\sum_{i} \int_{F\left(D_{i}\right)} \omega$. Now for each summand, since $F\left(D_{i}\right)$ is an open subset of $\mathbb{R}^{n}$, it can be exhausted by submanifolds-with-boundary $K_{N, i}$. By the dominated convergence theorem, $\int_{F\left(D_{i}\right)} \omega=\lim _{N \rightarrow \infty} \int_{K_{N, i}} \omega=$ $\lim _{N \rightarrow \infty} \int_{F_{i}^{-1}\left(K_{N, i}\right)} F_{i}^{*} \omega=\lim _{N \rightarrow \infty} \int_{F_{i}^{-1}\left(K_{N, i}\right)} F_{i}^{*} \omega=\int_{D_{i}} F_{i}^{*} \omega$ by the dominated convergence theorem.

## 2 Stokes' theorem

Theorem: Let $M$ be a smooth oriented $n$-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let $\omega$ be a compactly supported $n-1$ form on $M$. Then $\int_{M} d \omega=\int_{\partial M} \omega$. ( In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
Before we proceed to the proof, suppose $M$ is a domain in $\mathbb{R}^{2}$, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If $\partial M$ can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where $\gamma$ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of $\partial M$ corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. ( Extends to the multiply connected case.)

Proof: Cover the support of $\omega$ by finitely many charts (interior or boundary) $U_{i}$. Let $\rho_{i}$ be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$.

Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?) So assume wlog that $\omega$ is compactly supported in a chart $(U, \phi)$. Wlog, $\phi$ is positively oriented (why?) Thus $\int_{M} d \omega=\int_{\phi(U)} d\left(\phi^{-1}\right)^{*} \omega$. Therefore, it is enough to assume that $M$ is $\mathbb{H}^{n}$ or $\mathbb{R}^{n}$.

We have two cases:

- $M=\mathbb{R}^{n}$ : Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$ Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge$
.... This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$ : Assume that the support is in $[-A, A]^{n-1} \times[0, A]$. Now $\int_{\mathbb{H}^{n}} d \omega=$ $\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?) Now the boundary $\mathbb{R}^{n-1}$ has orientation form $d x^{1} \wedge d x^{2} \ldots\left(-\frac{\partial}{\partial x^{n}}, \ldots\right)=(-1)^{n} d x^{1} \wedge \ldots$ Thus the last integral equals $\int_{\partial \mathbb{H}^{n}} \omega$.
Consequences of Stokes:
- All the classical theorems ( Divergence, Stokes, Green) are special cases.
- If $S$ is a compact oriented submanifold of a smooth manifold $M$, and $\omega$ is a closed $k$-form on $M$, such that $\int_{S} \omega \neq 0$, then $\omega$ is NOT exact, and $S$ is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose $M$ is an oriented compact smooth manifold with boundary. There is no smooth retraction of $M$ onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if $r$ is identity on $\partial M$. If there is a retract, then suppose $\omega$ is an orientation form on $\partial M$. Then $r^{*} \omega$ is a smooth $n-1$ form on $M$ that restricts to $\omega$ on $\partial M$. Now $\int_{M} d r^{*} \omega=\int_{\partial M} \omega>0$. However, $d\left(r^{*} \omega\right)=r^{*}(d \omega)=0$ !
Example of Stokes: Let $M$ be the orientable compact 3-manifold-with-boundary $\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid w \geq 0, x^{2}+y^{2}+z^{2}+w^{2}=1\right\}$. Let $\omega=z^{2} d x \wedge d y+x^{2} d y \wedge d z+d x \wedge d w$ on $\mathbb{R}^{4}$. Then we need to choose an orientation on $M$ and verify the generalised Stokes' theorem for $\omega$ (that is, $\int_{M} d \omega=\int_{\partial M} \omega$ ) by explicitly calculating the left and right hand sides:
Consider the smooth parametrisation $\alpha\left(u_{1}, u_{2}, u_{3}\right)=\left(u_{1}, u_{2}, u_{3}, \sqrt{1-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}}\right)$ defined on the open unit ball in $\mathbb{R}^{3}$ to the interior of $M$. This map is smooth (by the Chain rule), $1-1$ (trivially), onto the interior (trivially), and the inverse is a projection which is smooth. Moreover, $D \alpha(p, q, r)=\left(p, q, r,-\frac{u_{1} p+u_{2} q+u_{3} r}{\sqrt{1-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}}}\right.$ which is clearly $1-1$. Choose the orientation that this parametrisation belongs to.
$d \omega=2 z d z \wedge d x \wedge d y+2 x d x \wedge d y \wedge d z+0=2(x+z) d x \wedge d y \wedge d z$.
Now $\alpha^{*}(d \omega)=2\left(u_{1}+u_{2}\right) d u_{1} \wedge d u_{2} \wedge d u_{3}$.
Since the parametrisation covers all of $M$ except for the boundary, which is of measure 0 because it is a finite union of images of the $u_{3}=0$ plane in $\mathbb{H}^{3}$ which has measure 0 in $\mathbb{H}^{3}$, we can calculate the integral as the improper integral $\int_{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}<1} \alpha^{*}(d \omega)=\int_{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}<1} 2\left(u_{1}+\right.$ $u_{2}$ ) which is in fact a Riemann integral because the integrand is bounded and continuous and the domain is a compact rectifiable one (the boundary of the domain is a
sphere which is a union of two graphs and hence has measure zero). By Fubini's theorem this integral is 0 .
Consider the parametrisations of a part of $M$ given by $\beta_{ \pm}\left(v_{1}, v_{2}, v_{3}\right)=\left( \pm \sqrt{1-v_{1}^{2}-v_{2}^{2}-v_{3}^{2}}, v_{1}, v_{2}, v_{3}\right)$
from the the open unit ball intersect $v_{3} \geq 0$ (an open subset of $\mathbb{H}^{3}$ ) to $M$ that cover a neighbourhood of a part of the boundary. These maps are smooth, $1-1$, and the inverses are projections. Moreover, just as before, $D \beta_{ \pm}$are $1-1$. The part of the boundary this is missed is the image of $v_{2}^{2}+v_{3}^{2}=1$ which has measure 0 in $\mathbb{R}^{2}$ because it is a union of two graphs.
The maps $\phi_{ \pm}=\alpha^{-1} \circ \beta_{ \pm}\left(v_{1}, v_{2}, v_{3}\right)=\left( \pm \sqrt{1-v_{1}^{2}-v_{2}^{2}-v_{3}^{2}}, v_{1}, v_{2}\right)$ satisfy $\operatorname{det}\left(D \phi_{ \pm}\right)(0,0,1 / \sqrt{2})=$ $\mp 1$ (and hence the signs stay the same throughout the domains of definition because the domains are connected). This means that $\beta_{+}$is not compatible with $\alpha$ and $\beta_{-}$is so. Therefore we change $\beta_{-}$to $\tilde{\beta}_{-}\left(v_{1}, v_{2}, v_{3}\right)=\beta_{-}\left(-v_{1}, v_{2}, v_{3}\right)$. Now the $\tilde{\beta}_{+}\left(v_{1}, v_{2}, 0\right):=$ $\beta_{+}\left(v_{1}, v_{2}, 0\right), \tilde{\beta}_{-}\left(v_{1}, v_{2}, 0\right)$ have the correct orientations for Stokes' theorem because the dimension of $M$ is odd.
They parametrise the boundary upto measure zero. Moreover, $\tilde{\beta}_{ \pm}^{*} \omega=v_{2}^{2} d\left( \pm \sqrt{1-v_{1}^{2}-v_{2}^{2}}\right) \wedge$
$d\left( \pm v_{1}\right)+\left(1-v_{1}^{2}-v_{2}^{2}\right) d\left( \pm v_{1}\right) \wedge d v_{2}=\left(\frac{v_{2}^{3}}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}} \pm\left(1-v_{1}^{2}-v_{2}^{2}\right)\right) d v_{1} \wedge d v_{2}$.
Hence by the theorems above, as improper integrals,

$$
\int_{\partial M} \omega=\iint_{v_{1}^{2}+v_{2}^{2}<1}\left(\frac{v_{2}^{3}}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}+\left(1-v_{1}^{2}-v_{2}^{2}\right)\right)+\iint_{v_{1}^{2}+v_{2}^{2}<1}\left(\frac{v_{2}^{3}}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}-\left(1-v_{1}^{2}-v_{2}^{2}\right)\right)
$$

Now the integral $\iint_{v_{1}^{2}+v_{2}^{2}<1}\left|\frac{v_{2}^{3}}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}\right|$ exists in the Lebesgue sense. Indeed, the integrand is at most $\frac{1}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}$. By the monotone convergence theorem, $\iint_{v_{1}^{2}+v_{2}^{2}<1} \frac{1}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}=$ $\lim _{n \rightarrow} \iint_{U_{n}=v_{1}^{2}+v_{2}^{2}<(1-1 / n)^{2}} \frac{1}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}}$ which exists by the change of variables formula for instance.
Now the above improper integrals are equal to (by linearity)

$$
\iint_{v_{1}^{2}+v_{2}^{2}<1} \frac{2 v_{2}^{3}}{\sqrt{1-v_{1}^{2}-v_{2}^{2}}},
$$

which by the change of variables formula is

$$
\lim _{n \rightarrow \infty} \iint_{(0,1-1 / n) \times(0,2 \pi)} \frac{2 r^{4} \cos ^{3}(\theta) \sin ^{3}(\theta)}{\sqrt{1-r^{2}}}
$$

which is given by Fubini's theorem as 0 .

## 3 Looking beyond

- Differential topology ( When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry ( distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry ( Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications ( Protein folding, control theory, general relativity, string theory, statistical mechanics, etc)

