
MA 235 - Lecture 27

1 Recap
1. Integration of top forms (definition).

2. Practical calculation by covering with charts from Rn upto measure zero. Here
we can do better than the theorem stated in the last class: Let ω be a compactly
supported top form on M . Let D1, . . . , Dk be bounded domains of integration in
Rn and Fi : D̄i → M be continuous maps that restrict to orientation-preserving
diffeos on Di, Fi(Di)∩Fj(Dj) = ϕ, supp(ω) ⊂ F1(D̄1)∪F2(D̄2) . . ., Fi(D̄i)−F (Di)
is of measure zero in the manifold for all i. Then

∫
M
ω =

∑
i

∫
Di

F ∗
i ω if the right-

hand-side is Lebesgue integrable.
Proof: As before, it is enough to assume that ω is compactly supported in a
chart U . Thus, we have reduced our problem to an open subset in Rn (after
throwing out the measure zero boundary in Hn). Since the boundaries are of
measure zero, the integral is

∑
i

∫
F (Di)

ω. Now for each summand, since F (Di)

is an open subset of Rn, it can be exhausted by submanifolds-with-boundary
KN,i. By the dominated convergence theorem,

∫
F (Di)

ω = limN→∞
∫
KN,i

ω =

limN→∞
∫
F−1
i (KN,i)

F ∗
i ω = limN→∞

∫
F−1
i (KN,i)

F ∗
i ω =

∫
Di

F ∗
i ω by the dominated con-

vergence theorem.

2 Stokes’ theorem
Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the bound-
ary has the induced orientation from outward vector fields). Let ω be a compactly
supported n − 1 form on M . Then

∫
M
dω =

∫
∂M

ω. ( In particular, if ∂M = ϕ, then∫
M
dω = 0.)

Before we proceed to the proof, suppose M is a domain in R2, and ω = Pdx+Qdy, then∫
M
dω =

∫
M
(∂Q
∂x

− ∂P
∂y
)dV and

∫
∂M

ω =
∫
∂M

(Pdx+Qdy). If ∂M can be parametrised as
γ : [0, 1] → ∂M where γ is a smooth simple closed curve such that γ′ ̸= 0, then by the
above result,

∫
∂M

ω =
∫
(0,1)

γ∗ω =
∫ 1

0
(P dx

dt
+ Qdy

dt
)dt. ( A small point: the orientation

of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green’s
theorem. ( Extends to the multiply connected case.)

Proof: Cover the support of ω by finitely many charts (interior or boundary) Ui.
Let ρi be a partition-of-unity subordinate to this cover. Then

∫
M
dω =

∑
i

∫
M
d(ρiω).
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Thus, if we prove Stokes for ρiω, i.e., for forms that are compactly supported in a
chart (interior or boundary), then we are done. (why?) So assume wlog that ω is
compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?) Thus∫
M
dω =

∫
ϕ(U)

d(ϕ−1)∗ω. Therefore, it is enough to assume that M is Hn or Rn.

We have two cases:

• M = Rn: Let ω = ωidx
1 . . . dxi−1 ∧ dx̂i ∧ . . .. Now

∫
Rn dω =

∫
Rn

∑
i
∂ωi

∂xi (−1)i−1dx1 ∧
. . .. This latter expression is 0. (Why?)

• M = Hn: Assume that the support is in [−A,A]n−1 × [0, A]. Now
∫
Hn dω =∫ A

−A
. . .
∫ A

−A

∫ A

0

∑
i
∂ωi

∂xi (−1)i−1dxn . . . =
∫
Rn−1(−1)nωn(x, 0) + 0 (why?) Now the

boundary Rn−1 has orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Consequences of Stokes:

• All the classical theorems ( Divergence, Stokes, Green) are special cases.

• If S is a compact oriented submanifold of a smooth manifold M , and ω is a closed
k-form onM , such that

∫
S
ω ̸= 0, then ω is NOT exact, and S is NOT the boundary

of a submanifold (why?)

• Thus, ω = xdy−ydx
x2+y2

is closed but not exact.

• Suppose M is an oriented compact smooth manifold with boundary. There is no
smooth retraction of M onto its boundary: Recall that r : M → ∂M is a retract
if r is identity on ∂M . If there is a retract, then suppose ω is an orientation form
on ∂M . Then r∗ω is a smooth n − 1 form on M that restricts to ω on ∂M . Now∫
M
dr∗ω =

∫
∂M

ω > 0. However, d(r∗ω) = r∗(dω) = 0!

Example of Stokes: Let M be the orientable compact 3-manifold-with-boundary
{(x, y, z, w) ∈ R4 | w ≥ 0, x2+ y2+ z2+w2 = 1}. Let ω = z2dx∧dy+x2dy∧dz+dx∧dw
on R4. Then we need to choose an orientation on M and verify the generalised Stokes’

theorem for ω
(

that is,
∫
M

dω =

∫
∂M

ω
)

by explicitly calculating the left and right hand
sides:
Consider the smooth parametrisation α(u1, u2, u3) = (u1, u2, u3,

√
1− u2

1 − u2
2 − u2

3) de-
fined on the open unit ball in R3 to the interior of M . This map is smooth (by the Chain
rule), 1− 1 (trivially), onto the interior (trivially), and the inverse is a projection which
is smooth. Moreover, Dα(p, q, r) = (p, q, r,− u1p+u2q+u3r√

1−u2
1−u2

2−u2
3

which is clearly 1− 1. Choose
the orientation that this parametrisation belongs to.
dω = 2zdz ∧ dx ∧ dy + 2xdx ∧ dy ∧ dz + 0 = 2(x+ z)dx ∧ dy ∧ dz.
Now α∗(dω) = 2(u1 + u2)du1 ∧ du2 ∧ du3.
Since the parametrisation covers all ofM except for the boundary, which is of measure 0
because it is a finite union of images of the u3 = 0plane inH3 which has measure 0 inH3,
we can calculate the integral as the improper integral

∫
u2
1+u2

2+u2
3<1

α∗(dω) =
∫
u2
1+u2

2+u2
3<1

2(u1+

u2) which is in fact a Riemann integral because the integrand is bounded and contin-
uous and the domain is a compact rectifiable one (the boundary of the domain is a
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sphere which is a union of two graphs and hence has measure zero). By Fubini’s
theorem this integral is 0 .
Consider the parametrisations of a part ofM given byβ±(v1, v2, v3) = (±

√
1− v21 − v22 − v23, v1, v2, v3)

from the the open unit ball intersect v3 ≥ 0 (an open subset of H3) to M that cover
a neighbourhood of a part of the boundary. These maps are smooth, 1 − 1, and the
inverses are projections. Moreover, just as before, Dβ± are 1 − 1. The part of the
boundary this is missed is the image of v22 + v23 = 1 which has measure 0 in R2 because
it is a union of two graphs.
The mapsϕ± = α−1◦β±(v1, v2, v3) = (±

√
1− v21 − v22 − v23, v1, v2) satisfydet(Dϕ±)(0, 0, 1/

√
2) =

∓1 (and hence the signs stay the same throughout the domains of definition because
the domains are connected). This means that β+ is not compatible with α and β− is so.
Therefore we change β− to β̃−(v1, v2, v3) = β−(−v1, v2, v3). Now the β̃+(v1, v2, 0) :=

β+(v1, v2, 0), β̃−(v1, v2, 0) have the correct orientations for Stokes’ theorem because the
dimension of M is odd.
They parametrise the boundary upto measure zero. Moreover, β̃∗

±ω = v22d(±
√

1− v21 − v22)∧

d(±v1) + (1− v21 − v22)d(±v1) ∧ dv2 =

(
v32√

1−v21−v22
± (1− v21 − v22)

)
dv1 ∧ dv2.

Hence by the theorems above, as improper integrals,∫
∂M

ω =

∫ ∫
v21+v22<1

(
v32√

1− v21 − v22
+ (1− v21 − v22)

)
+

∫ ∫
v21+v22<1

(
v32√

1− v21 − v22
− (1− v21 − v22)

)

Now the integral
∫ ∫

v21+v22<1
| v32√

1−v21−v22
| exists in the Lebesgue sense. Indeed, the inte-

grand is at most 1√
1−v21−v22

. By the monotone convergence theorem,
∫ ∫

v21+v22<1
1√

1−v21−v22
=

limn→
∫ ∫

Un=v21+v22<(1−1/n)2
1√

1−v21−v22
which exists by the change of variables formula for

instance.
Now the above improper integrals are equal to (by linearity)∫ ∫

v21+v22<1

2v32√
1− v21 − v22

,

which by the change of variables formula is

lim
n→∞

∫ ∫
(0,1−1/n)×(0,2π)

2r4 cos3(θ) sin3(θ)√
1− r2

which is given by Fubini’s theorem as 0.

3 Looking beyond
• Differential topology ( When are two manifolds homeomorphic but not diffeo-

morphic?)

• Riemannian geometry ( distances, angles, curvature, congruence/isomorphism,
finding the best metric, etc)
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• Geometric analysis ( PDE on manifolds)

• Symplectic geometry ( Classical mechanics on manifolds)

• Algebraic geometry ( Zeroes of polynomials)

• Arithmetic geometry and number theory ( Modular forms and elliptic curves for
instance)

• Applications ( Protein folding, control theory, general relativity, string theory,
statistical mechanics, etc)
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