1 Recap

1. Higher derivatives and Clairaut's theorem.
2. Taylor's theorem.
3. Second derivative test.
4. Positive-definiteness.

2 Bump functions

Unfortunately, even if the Taylor series converges, it need NOT be equal to the function itself! Let $E(t)=e^{-1 / t}$ when $t>0$ and 0 when $t \leq 0$. It turns out that $E(t)$ is C^{∞} everywhere (an exercise/Lee's book).
Theorem: There exists a smooth function $\chi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies

1. $0 \leq \chi \leq 1$.
2. $\chi=1$ on $[-1,1] \times[-1,1] \ldots[-1,1]$.
3. $\operatorname{supp}(\chi)$ is contained in $[-2,2] \times[-2,2] \ldots$.

We can find a function that satisfies similar properties but is instead radially symmetric. Such functions are called bump functions.
Proof: We first construct χ for $n=1$. Let $\zeta(t)=\frac{E(t)}{E(t)+E(1-t)}$. Now $\zeta(t)=0$ for $t \leq 0$ and $\zeta(t)=1$ for $t \geq 1$. Let $\eta(t)=\zeta(2+t) \zeta(2-t)$. This does the job when $n=1$. If we want a spherically symmetric bump function in \mathbb{R}^{m}, simply define it as $\chi(x)=\eta(r)$. If we want a cylindrically symmetric bump function in \mathbb{R}^{m}, simply define it as $\chi(x)=\eta\left(x^{1}\right) \eta\left(x^{2}\right) \eta\left(x^{3}\right) \ldots$.

3 The Einstein summation convention

It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us. "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
Examples:

1. If v is a real row vector, and w is a real column vector, then $\left\langle v^{T}, w\right\rangle=v_{i} w^{i}$.
2. If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(A v)^{i}=A_{j}^{i} v^{j}$.
3. $\operatorname{Tr}(A)=A_{i}^{i}$.
4. $D(f \circ g)_{j}^{i}=[D f]_{k}^{i}[D g]_{j}^{k}$.
5. $\operatorname{Tr}(A B)=A_{j}^{i} B_{i}^{j}=B_{i}^{j} A_{j}^{i}=\operatorname{Tr}(B A)$.

If V is a vector space, basis vectors are denoted with subscripts (like e_{1}, e_{2}, \ldots) and components w.r.t a basis are denoted with superscripts (like $v=v^{i} e_{i}$). For the dual space, the indices are flipped, i.e., $e_{1}^{*}=e^{1}, \ldots$ and $\omega=\omega_{i} e^{i}$.

4 The inverse function theorem and its cousins

Consider $x^{2}+y^{2}=1$. Is y a differentiable function of x ? Of course not! $y= \pm \sqrt{1-x^{2}}$. So y is not even a function of x ! Also, both functions are not differentiable at $x= \pm 1$. The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y. We can also generalise this observation to $x^{2}+y^{2}=r^{2}$. Near say $\left(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}}\right), y=\sqrt{r^{2}-x^{2}}$ is a smooth function of (r, x). What about $x^{\sin (y)}+y^{2}+e^{x y}=1$? It is not clear whether we can solve for either variable in terms of the other. Even if we can, it is unlikely that we can write a simple formula for the solution.

More generally, given a C^{k} function $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, we can ask, "Can we solve for y as a C^{1} function of x, c from $F(x, y)=c$?" Since C^{1} functions can be approximated by linear functions, let us at least try our luck when $F(x, y)=A x+B y$ where A, B are constant matrices (of what type?). So if $A x+B y=c$, can we solve for y in terms of x, c uniquely? $B y=c-A x$. Therefore, this question has an affirmative answer iff B is an invertible matrix.

Often in maths, general cases can be reduced to the simplest non-trivial special cases. Suppose $n=0$, i.e., if $F(y)=c$, can we locally solve for y as a C^{1} function of c ? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ? When $n=1$, by monotonicity, this problem is not hard. In general, we need a theorem. We expect that it is good enough for $D F_{a}$ to be invertible. Indeed, this expectation is true.

Theorem 1 (The inverse function theorem (IFT)). Let $U, V \subset \mathbb{R}^{n}$ be open sets. Suppose $F: U \rightarrow V$ is a C^{k} function (where $k \geq 1$ can be ∞). If $D F_{a}$ is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_{a} \subset U, F(a) \in V_{a} \subset V$ such that $F: U_{a} \rightarrow V_{a}$ is a C^{k}-diffeomorphism. Moreover, $D F_{f(a)}^{-1}=\left(D F_{a}\right)^{-1}$.

You might have seen the case when $k=1$. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1}. The proof of this theorem can be done using Newton's iteration. (Optional fun fact: The proof shows that the same kind of a result holds when U, V are open subsets of a Banach space. While we won't need this fact, it is useful for PDE.)
Corollary: Suppose $U \subset \mathbb{R}^{n}$ is open and $F: U \rightarrow \mathbb{R}^{n}$ is $C^{k}(1 \leq k \leq \infty)$. Assume that $\operatorname{det}\left(D F_{a}\right) \neq 0 \forall a \in U$. Then F is an open map, and if F is $1-1, F: U \rightarrow F(U)$ is a C^{k}-diffeomorphism.
Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W=\cup_{a} U_{a}$. Since $F\left(U_{a}\right)$ is open and $F(W)=\cup_{a} F\left(U_{a}\right)$, we see that $F(W)$ is open.
Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^{k}-diffeo.
Therefore, $x=r \cos (\theta), y=r \sin (\theta)$ is a diffeo on $(0, \infty) \times(0,2 \pi)$ (more generally, on any open subset away from $r=0$ where it is $1-1$).

