
1 Recap
1. Higher derivatives and Clairaut’s theorem.

2. Taylor’s theorem.

3. Second derivative test.

4. Positive-definiteness.

2 Bump functions
Unfortunately, even if the Taylor series converges, it need NOT be equal to the function
itself! Let E(t) = e−1/t when t > 0 and 0 when t ≤ 0. It turns out that E(t) is C∞

everywhere (an exercise/Lee’s book).
Theorem: There exists a smooth function χ : Rn → R that satisfies

1. 0 ≤ χ ≤ 1.

2. χ = 1 on [−1, 1]× [−1, 1] . . . [−1, 1].

3. supp(χ) is contained in [−2, 2]× [−2, 2] . . ..
We can find a function that satisfies similar properties but is instead radially symmetric.
Such functions are called bump functions.
Proof: We first construct χ for n = 1. Let ζ(t) = E(t)

E(t)+E(1−t)
. Now ζ(t) = 0 for

t ≤ 0 and ζ(t) = 1 for t ≥ 1. Let η(t) = ζ(2 + t)ζ(2 − t). This does the job when
n = 1. If we want a spherically symmetric bump function in Rm, simply define it as
χ(x) = η(r). If we want a cylindrically symmetric bump function in Rm, simply define
it as χ(x) = η(x1)η(x2)η(x3) . . ..

3 The Einstein summation convention
It is painful to keep using Σ every time we want to sum over. Einstein invented a
convenient notation for us. “Sum over indices that are repeated above and below.
Column vectors have superscripts and row vectors have subscripts."
Examples:

1. If v is a real row vector, and w is a real column vector, then ⟨vT , w⟩ = viw
i.

2. If A is an m× n matrix, and v is an n× 1 vector, then (Av)i = Ai
jv

j .

3. Tr(A) = Ai
i.

4. D(f ◦ g)ij = [Df ]ik[Dg]kj .

5. Tr(AB) = Ai
jB

j
i = Bj

iA
i
j = Tr(BA).

If V is a vector space, basis vectors are denoted with subscripts ( like e1, e2, . . .) and
components w.r.t a basis are denoted with superscripts ( like v = viei). For the dual
space, the indices are flipped, i.e., e∗1 = e1, . . . and ω = ωie

i.



4 The inverse function theorem and its cousins
Consider x2 + y2 = 1. Is y a differentiable function of x? Of course not! y = ±

√
1− x2.

So y is not even a function of x! Also, both functions are not differentiable at x = ±1.
The best we can say is “near" (a, b) on the circle, we can differentiably solve for ei-
ther y in terms of x or x in terms of y. We can also generalise this observation to
x2+ y2 = r2. Near say ( r√

2
, r√

2
), y =

√
r2 − x2 is a smooth function of (r, x). What about

xsin(y) + y2 + exy = 1? It is not clear whether we can solve for either variable in terms
of the other. Even if we can, it is unlikely that we can write a simple formula for the
solution.

More generally, given a Ck function F : Rn ×Rm → Rm, we can ask, “Can we solve
for y as a C1 function of x, c from F (x, y) = c?" Since C1 functions can be approximated
by linear functions, let us at least try our luck when F (x, y) = Ax+By where A,B are
constant matrices (of what type?). So if Ax+By = c, can we solve for y in terms of x, c
uniquely? By = c− Ax. Therefore, this question has an affirmative answer iff B is an
invertible matrix.

Often in maths, general cases can be reduced to the simplest non-trivial special
cases. Suppose n = 0, i.e., if F (y) = c, can we locally solve for y as a C1 function of
c? That is, when do local inverses exist and are differentiable, i.e., when is F a local
diffeomorphism? Also, what is the derivative of F−1? When n = 1, by monotonicity,
this problem is not hard. In general, we need a theorem. We expect that it is good
enough for DFa to be invertible. Indeed, this expectation is true.

Theorem 1 (The inverse function theorem (IFT)). Let U, V ⊂ Rn be open sets. Suppose
F : U → V is a Ck function ( where k ≥ 1 can be ∞). If DFa is invertible at a ∈ U , then
there exist connected neighbourhoods a ∈ Ua ⊂ U , F (a) ∈ Va ⊂ V such that F : Ua → Va is a
Ck-diffeomorphism. Moreover, DF−1

f(a) = (DFa)
−1.

You might have seen the case when k = 1. Given that case, the general case is an
easy inductive application of the chain rule to the formula for the derivative of F−1.
The proof of this theorem can be done using Newton’s iteration. ( Optional fun fact:
The proof shows that the same kind of a result holds when U, V are open subsets of a
Banach space. While we won’t need this fact, it is useful for PDE.)
Corollary: Suppose U ⊂ Rn is open and F : U → Rn is Ck ( 1 ≤ k ≤ ∞). Assume that
det(DFa) ̸= 0 ∀ a ∈ U . Then F is an open map, and if F is 1 − 1, F : U → F (U) is a
Ck-diffeomorphism.
Proof: Open map: The IFT implies that F is a local diffeo. Thus, if W ⊂ U is an open
set, then W = ∪aUa. Since F (Ua) is open and F (W ) = ∪aF (Ua), we see that F (W ) is
open.
Diffeomorphism: F is invertible. Thus, every local inverse coincide with F−1 and
hence F−1 is a Ck-diffeo.
Therefore, x = r cos(θ), y = r sin(θ) is a diffeo on (0,∞) × (0, 2π) ( more generally, on
any open subset away from r = 0 where it is 1− 1).
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