HW 1(to be submitted in the second week of January)

- 1. Let $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $x \neq 0$ and f(0,y) = 0. Prove that f is directionally differentiable along all directions at (0,0) but is not differentiable at (0,0).
- 2. Let f(x, y) = ||x| |y|| |x| |y|. Prove that the partials exist and f is continuous at (0, 0) but it isn't differentiable there.
- 3. Prove that a symmetric real 2×2 matrix S is positive-definite iff the diagonal entries of S are positive and det(S) > 0.
- 4. Find the critical points of $f(x, y) = 4x^2 + 9y^2 + 8x 36y + 24$ and determine their nature.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a twice-differentiable function whose second partials are continuous everywhere. We shall analyse a continuous version of gradient descent in this question. Assume that a twice-differentiable solution (whose second derivative is continuous) $\vec{r}(t) : [0, \infty)$ exists to the equation $\frac{d\vec{r}}{dt} = -\nabla f(\vec{r}(t))$ with $\vec{r}(0) = \vec{r}_0$. Assume that Hess(f) - cI is positive-definite for some c > 0 and Hess(f) is the Hessian matrix of f. Assume that a global minimum for f exists and is unique.
 - (a) Prove that $\frac{df}{dt} = -|\nabla f|^2$.
 - (b) Prove that $\frac{d^2f}{dt^2} = 2\sum_{i,j} f_i f_{ij} f_j$.
 - (c) As a consequence, prove that $\frac{d^2f}{dt^2} \ge 2c|\nabla f|^2$ and that $\frac{d|\nabla f|^2}{dt} \le -2c|\nabla f|^2$.
 - (d) Prove that $|\nabla f|^2(\vec{r}(t)) \leq |\nabla f|^2(\vec{r_0})e^{-2ct}$.
 - (e) Prove that $|\vec{r}(t) \vec{r}(s)| \le A(e^{-cs} e^{-ct})|$ for some A and for all $s, t \ge 0$.
 - (f) Prove that $\vec{a} = \lim_{t \to \infty} \vec{r}(t)$ exists.
 - (g) Prove that \vec{a} is the global minimum of f.