HW 1(to be submitted in the second week of January)

1. Let $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$ if $x \neq 0$ and $f(0, y)=0$. Prove that f is directionally differentiable along all directions at $(0,0)$ but is not differentiable at $(0,0)$.
2. Let $f(x, y)=||x|-|y||-|x|-|y|$. Prove that the partials exist and f is continuous at $(0,0)$ but it isn't differentiable there.
3. Prove that a symmetric real 2×2 matrix S is positive-definite iff the diagonal entries of S are positive and $\operatorname{det}(S)>0$.
4. Find the critical points of $f(x, y)=4 x^{2}+9 y^{2}+8 x-36 y+24$ and determine their nature.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a twice-differentiable function whose second partials are continuous everywhere. We shall analyse a continuous version of gradient descent in this question. Assume that a twice-differentiable solution (whose second derivative is continuous) $\vec{r}(t):[0, \infty)$ exists to the equation $\frac{d \vec{r}}{d t}=-\nabla f(\vec{r}(t))$ with $\vec{r}(0)=\vec{r}_{0}$. Assume that $\operatorname{Hess}(f)-c I$ is positive-definite for some $c>0$ and $\operatorname{Hess}(f)$ is the Hessian matrix of f. Assume that a global minimum for f exists and is unique.
(a) Prove that $\frac{d f}{d t}=-|\nabla f|^{2}$.
(b) Prove that $\frac{d^{2} f}{d t^{2}}=2 \sum_{i, j} f_{i} f_{i j} f_{j}$.
(c) As a consequence, prove that $\frac{d^{2} f}{d t^{2}} \geq 2 c|\nabla f|^{2}$ and that $\frac{d|\nabla f|^{2}}{d t} \leq-2 c|\nabla f|^{2}$.
(d) Prove that $|\nabla f|^{2}(\vec{r}(t)) \leq|\nabla f|^{2}\left(\vec{r}_{0}\right) e^{-2 c t}$.
(e) Prove that $|\vec{r}(t)-\vec{r}(s)| \leq A\left(e^{-c s}-e^{-c t}\right) \mid$ for some A and for all $s, t \geq 0$.
(f) Prove that $\vec{a}=\lim _{t \rightarrow \infty} \vec{r}(t)$ exists.
(g) Prove that \vec{a} is the global minimum of f.
