HW 2 (to be submitted by Jan 24)

1. (7 marks) Consider the function $f\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1} x^{2} \ldots x^{n}\right)^{1 / n}$ defined on $x_{i} \geq$ $0 \forall i$.
(a) (5 marks) Find the maximum value of f subject to $x^{1}+x^{2}+\ldots+x^{n}=c$.
(b) (2 marks) Prove that AM-GM inequality.
2. (8 marks) This problem aims to generalise the Lagrange multipliers method to more than one constraint.
(a) (3 marks) Suppose A is an $m \times n$ matrix of real numbers. Prove that A has full rank if and only if there exists an $r \times r$ invertible minor where $r=\min (m, n)$. (That is, we can permute the standard bases of \mathbb{R}^{n} and \mathbb{R}^{m} so that the first $r \times r$ block of the resulting new matrix is invertible.)
(b) (2 marks) Let $U \subset \mathbb{R}^{n}$ be an open set and $G: U \rightarrow \mathbb{R}^{m}$ given by $G\left(x^{1}, \ldots, x^{n}\right)=$ $\left(g^{1}(x), g^{2}(x), \ldots, g^{m}(x)\right)$ be a smooth function $(m<n)$. Suppose $D G_{a}$ has full rank where $a \in U$. Prove that (make the following statement precise as a part of the exercise) near a, one can solve for m variables in terms of the other $n-m$ variables smoothly.
(c) (3 marks) Let $f: U \rightarrow \mathbb{R}$ be a smooth function that attains a local extremum subject to $G=0$ at $a \in U$. Assume that $D G_{a}$ has full rank. Prove that there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that $\nabla f(a)=\lambda_{1} \nabla g_{1}(a)+\lambda_{2} \nabla g_{2}(a)+\ldots$.
3. (5 marks) Prove that if a Hausdorff second-countable space such that every point p has a neighbourhood U_{p} that is homeomorphic to $\mathbb{R}^{n_{p}}$ is connected, then n_{p} is independent of p.
4. (5 marks) Consider the surface of revolution S in \mathbb{R}^{3} obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ (in the $x-z$ plane) about the z-axis. Come up with a smooth atlas for S.
