## HW 7 (to be submitted by Mar 29)

1. (9 marks) Show that covectors $/ 1$-forms $\omega_{1}, \ldots, \omega_{k}$ on a finite-dimensional vector space are linearly dependent iff $\omega^{1} \wedge \ldots \omega^{k}=0$.
2. (6 marks) Compute $F^{*} \omega$ in the following examples. ( $F: M \rightarrow N$ is a given smooth map and $\omega$ is a given smooth form-field on $N$ )
(a) $M=N=\mathbb{R}^{2}, F(s, t)=\left(s t, e^{t}\right), \omega=x d y-y d x$.
(b) $M=N=\mathbb{R}^{3}, F(u, v, w)=\left(u^{2}, u v, u v w\right), \omega=x d y \wedge d z+y^{2} d z \wedge d x$.
3. (10 marks) Prove that there is a smooth vector field on $\mathbb{R}^{n}$ whose associated time $t=1$ diffeomorphism from $\mathbb{R}^{n}$ to itself interchanges a given pair of points $(p, q)$.
