HW 8 (to be submitted by April 5)

- 1. (7 marks) Let U be a bounded open convex subset of \mathbb{R}^m and $G: \overline{U} \to \mathbb{R}^n$ be a smooth map. Prove that
 - (a) (3 marks) $||G(x) G(y)|| \le C||x y||.$
 - (b) (4 marks) Prove that if $m \leq n$ and $E \subset U$ has measure zero, then G(E) has measure zero.
- 2. (8 marks) Prove that a submanifold of \mathbb{R}^n of dimension at most n-1 has measure zero in \mathbb{R}^n .
- 3. (10 marks) Prove that $\int_{-\infty}^{\infty} e^{-x^2} dx$ (in the Lebesgue sense) is $\sqrt{\pi}$ using the strategy described in the class (using multivariable calculus). You are allowed to use the change of variables formula mentioned in the class and measure theory.