
MA 235 - Lectures 10 - 14

1 Tangent spaces
Examples of tangent spaces:

• Let V be a f.d normed vector space treated as a smooth manifold. Consider the
mapDa,vf = df(a+tv)

dt
. This map gives an isomorphism of V to TaV that commutes

with linear maps to other vector spaces (what does this mean and why?)

• Thus we can canonically identify V with TaV . Moreover, if M ⊂ V is an open
submanifold, then TaM = TaV = V . Thus TaGL(n,R) =M(n,R).

• LetM1,M2, . . . ,Mk be smooth manifolds (without boundary). Then αp : Tp(M1×
M2 . . .)→ TpM1 × TpM2 . . . given by αp(v) = ((π1)∗(v), (π2)∗(v), . . .) is an isomor-
phism.

Proposition: LetM be a smooth n-manifold with or without boundary, and p ∈M .
For any chart (U, xi) around p, the (pushforwards of) the coordinate vectors ∂

∂xi
form

a basis for TpM , i.e., If f ∈ C∞(M), then v(f) = vi ∂f◦φ
−1

∂xi
(φ(p)). As always, we abuse

notation and drop the φ. So v(f) = vi ∂f
∂xi

(p).
The vectors ∂

∂xi
are called a coordinate basis for TpM . Since the map v → Dp,v is an

isomorphism in Rn, these vectors can also be identified with e1 = (1, 0, 0 . . .), . . .. The
components of v in a coordinate chart (U, xi) are vi = v(xi).
Let F : U ⊂ Rm → V ⊂ Rn be a smooth map. Then F∗(

∂
∂xi

)(f) = ∂(f◦F )
∂xi

(p) =
∂f
∂yj

(F (p))∂F
j

∂xi
(p). In other words, F∗ ∂

∂xi
= ∂F j

∂xi
∂
∂yj

. Thus if v is treated as column vector ~v
with components vi, then F∗v is a column vector obtained by [DF ]~v. The same formula
(with abuse of notation)holds forF :M → N and (U, xi), (V, yj) are coordinates around
p, F (p).

Suppose (U, x), (V, x̃) are two coordinate charts around p ∈ M . Suppose v ∈ TpM .
So (abusing notation) v = vi ∂

∂xi
and v = ṽj ∂

∂x̃j
. How are the vi and ṽj related? Note

that ṽj = v(x̃j) = vi ∂x̃
j

∂xi
.

Example: Consider the polar coordinates (r, θ) and the Cartesian coordinates (x, y).
What is the vector ∂

∂r
+ 2 ∂

∂θ
in terms of î = ∂

∂x
and ĵ = ∂

∂y
? It is ∂x

∂r
î+ ∂y

∂r
ĵ + 2∂x

∂θ
î+ 2∂y

∂θ
ĵ.

Example (Caution!): Let x̃ = x, ỹ = y + x3. Let p = (1, 0) in (x, y) coordinates. Is
∂
∂x
|p = ∂

∂x̃
|p? ∂

∂x
= ∂x̃

∂x
∂
∂x̃

+ ∂ỹ
∂x

∂
∂ỹ

which at p is ∂
∂x̃

+ 3 ∂
∂ỹ
.
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Recall that i : Sn → Rn+1 is smooth. Thus i∗ : TpS
n → TpR

n+1 is a linear
map. In coordinates: Consider the stereographic charts U±. For instance, on U+,
i(z1 = x1

1−xn+1 , . . . , z
n = xn

1−xn+1 ) = (x1 = 2zi

1+
∑

j(z
j)2
, x2, . . . , xn+1 =

∑
j(z

j)2−1∑
j(z

j)2+1
). In these

coordinates, i∗ ∂
∂zi

= ∂xj

∂zi
∂
∂xj

. It can be easily seen that i∗ is 1 − 1 and that its image is
precisely the usual tangent plane at p.

Another definition of the tangent space (a physicist’s definition): LetM be a man-
ifold (with or without boundary). Consider the set S of all the coordinate charts
(U, x) containing p. For every (U, x) ∈ S , consider the vector space VU,x = Rn, i.e.,
consider the disjoint union of Rn over U, x. Define a relation ∼ on this disjoint union
as v ∈ VU,x ∼ w ∈ VW,y if vi = wj ∂x

i

∂yj
(p). This relation is an equivalence relation

(why?) The set of equivalence classes is defined to be ˜TpM . It is a vector space
(how?). Suppose F : M → N is a smooth map, define F̃∗([v]) = [DFv]. Consider the
(choice-free/canonical) map F : TpM → ˜TpM given by v → [vi]. This map is a linear
isomorphism that commutes with pushforwards (HW).

Velocities of paths: Given an interval J ⊂ R and a smoothmanifold (with orwithout
boundary)M , a smooth path passing through p ∈ M is a smooth function γ : J → M
such that γ(t0) = p for some t0 ∈ J . ( Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.) Note that the TtJ = R for every t ∈ J . The velocity of a
smooth path at t0 is γ′(t0) = (γ∗)t0(

d
dt
) ∈ TpM . ( One also denotes it by various other

symbols.) It acts on smooth functions as γ′(t0)(f) = (f ◦ γ)′(t0). Suppose (U, xi) is a
coordinate chart around p, γ′(t0) = dγi

dt
(t0)

∂
∂xi

, i.e., γ′(t0)(f) = ∂f
∂xi

(p)dγ
i

dt
(t0).

Proposition: Every v ∈ TpM is the velocity of some smooth path inM passing through
p.
Proof: Choose a chart (U, x) centred at p. Now v = vi ∂

∂xi
. Choose the smoothpath γ(t) =

t(v1, . . . , vn) (abusing notation). Also the domain of γ depends onwhether we are deal-
ing with a boundary point or an interior point. Clearly γ′(0) = v. Composition
(trivial): Let F :M → N be a smooth map and γ : J →M be a smooth path. Then the
velocity of F ◦ γ at t0 is F∗(γ′(t0)).
Computing the differential: Suppose F : M → N is smooth and v ∈ TpM . Then
F∗v = (F ◦ γ)′(0)where γ(0) = p, γ′(0) = v.

Basically, all tangent vectors are velocity vectors of smooth paths. We can turn
this around to define tangent vectors. Consider the relation ∼ between smooth paths
γ : J → M where 0 ∈ J and γ(0) = p: γ1 ∼ γ2 if (f ◦ γ1)′(0) = (f ◦ γ2)′(0) for any
real-valued smooth function defined on a neighbourhood of p. This relation is an
equivalence relation (why?). VpM is defined to be the set of equivalence classes. If
F : M → N is a smooth map, then F∗[γ] = [F ◦ γ]. The velocity of a smooth path γ is
simply [γ]. Defining a vector space structure isn’t easy. The simplest way is: Consider
the map T : VpM → TpM as [γ] → γ′(0). ( Why is this well-defined?) This map is
a bĳection (why?) Thus this canonical map can be used to define the vector space
structure such that it is a linear isomorphism.

Recall that if f : Rn → Rk (k < n) is a smooth map such that Dfa has full rank=k,
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that is, it is surjective whenever f(a) = 0, then f−1(0) “can be made into" a smooth
manifold (HW 3). By the way, why k < n? What about the image of a smooth map
f : Rn → Rm (m > n), i.e., Df is 1− 1? Even one where Df has full rank everywhere?
One can find a counterexample where f is also 1−1 in addition toDf being 1−1 every-
where! ( f : (−π, π)→ R2 given by f(t) = (sin(2t), sin(t))). So if f :M → N (manifolds
without boundary) is a smooth map (n < m), q ∈ N , such that f∗ : TpM → Tf(p)=qN
is surjective whenever f(p) = q, then can f−1(q) be made into a smooth manifold?
Likewise, what about the other case?

2 Immersions, submersions, and embeddings
Definitions: LetM,N be smooth manifolds (with or without boundary) and F :M →
N be a smoothmap. The rank ofF at p is defined to be the rank of (F∗)p : TpM → TF (p)N
(which is the same as the rank of [DF ]p in coordinate charts). If F has the same rank at
every point, then it is said to have constant rank. If (F∗)p has full rank, then F is said
to have full rank at p. If (F∗)p is surjective for all p ∈M , then F is called a submersion.
It is 1− 1 for all p ∈M , then F is said to be an immersion.
Proposition: If (F∗)p is surjective, then p has a neighbourhood U such that F : U → N
is a submersion. Likewise for injectivity at p.
Proof: Indeed, choosing coordinates, the smooth matrix-valued function [DF ] has full
rank at p iff a minor is non-zero. That minor will continue to be non-zero in a neigh-
bourhood.

Examples and non-examples:

• f : R → R given by f(x) = x2 is not of constant rank. It is an immersion (and a
submersion) at x = 1 for instance.

• f : R3 → R given by f(x, y, z) = x is a submersion. Likewise for projections from
products of manifolds.

• f : R2 → R3 given by f(x, y) = (x, y, 0) is an immersion. Likewise for inclusions
into products of manifolds.

• Let γ : J →M be a smooth map. Then γ is an immersion iff γ′(t) 6= 0 for all t ∈ J .

• A circle rotated about an axis can be thought of as an immersion of R2 into R3.

• A 1− 1 immersion need not be a homeomorphism to its image.

Our figure-8 1-1 immersion was not a manifold. The key problem is that the map
was not a homeomorphism of (−π, π) to its image (which was a manifold).
Definition: LetM,N be smoothmanifolds (with or without boundary). A smoothmap
F :M → N is called a smooth embedding if it is a 1− 1 immersion and F :M → F (M)
is a homeomorphism.
Examples:
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• Let U ⊂ M be an open subset. Then the inclusion map i : U ⊂ M is a smooth
embedding: Indeed, it is a smooth 1− 1 immersion. Its topology is induced from
M and hence of course homeomorphic to its image.

• The inclusionmapMi →M1×M2 . . .Mk givenby f(q) = (p1, p2, . . . , pi−1, q, pi+1, . . .)
is a smooth embedding. In particular, the inclusion of Rn into Rn+k is a smooth
embedding.

• It turns out that (HW) a torus treated as a surface of revolution gives a smooth
embedding into R3.

Proposition: If F : M → N is a 1− 1 immersion, then F is a smooth embedding if
either F is an open or a closed map or ifM is compact.
Proof: If F is open or closed, it is a homeomorphism to its image. If M is compact,
then since N is Hausdorff, F is closed and hence a homeomorphism to its image.
Sn is a manifold in its own right. It is also a subset of another manifold Rn+1. Are the
smooth structures “compatible"?
Definitions: Let M be a manifold (with or without boundary) and let S ⊂ M be a
subset that carries a smooth manifold (without boundary) structure. If the inclusion
map i : S →M is a smooth embedding, then S is said to be an embedded submanifold
(or simply a submanifold) of the ambient manifoldM . If i is merely a 1− 1 immersion,
then S is said to be an immersed submanifold ofM . The codimension of a submanifold
S is dim(M)− dim(S).

Examples:

• The figure-8 is an immersed but not embedded submanifold of R2.

• The linear subspace Rn is an embedded submanifold of Rm whenm > n.

• An open subset U ⊂M is an embedded submanifold.

• Sn is an embedded submanifold of Rn+1.

• Every “slice" ofM ×N is an embedded submanifold.

• Graphs are embedded submanifolds.

• It turns out (HW) that the boundary of amanifoldwith boundary is an embedded
submanifold (without boundary) of codimension 1.

Is every manifold secretly a submanifold of RN?
Whitney’s embedding theorem: Every smooth n-manifold with or without boundary
admits a smooth embedding into R2n+1.
This theorem is akin to Cauchy’s theorem of group theory. The proof is tricky. We
shall prove a weak version (Not N = 2n+ 1) of it only for compact manifolds without
boundary, later.
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3 Function theorems on manifolds
How can we come up with examples of embedded submanifolds? (HW 3) suggests
that having inverse/implicit function type theorems onmanifolds can help. From now
onwards, we will focus mainly on manifolds without boundary. Towards the end of
this course, we will again come back to manifolds-with-boundary (for Stokes’ theo-
rem).
Inverse function theoremonmanifolds: LetM,N be smoothmanifoldswithout bound-
ary and F : M → N be a smooth map. If (F∗)p : TpM → TF (p)N is invertible, then F is
a local diffeomorphism, i.e., there exist connected neighbourhoods U, V of p, F (p) such
that F : U → V is a diffeomorphism.
Proof: Choose coordinate charts (Ũ ⊂M,x) and (Ṽ ⊂ N, y) centred at p, F (p). In these
charts (abusing notation), (F∗)p is [DF ]p which is assumed to be invertible. Thus, by
the usual IFT, F is a local diffeomorphism.

Constant Rank Theorem: Suppose M,N are manifolds (without boundary) and
F : M → N is a smooth map with constant rank r. For every p ∈ M,F (p) ∈ N , there
exist charts so that F̂ (x1, . . . , xm) = (x1, . . . , xr, 0, 0, . . .).
Proof: Choose some arbitrary charts centred at p, F (p). Now the problem is a local
one, i.e., if F : U ⊂ Rm → Rn is a smooth map with constant rank r and F (0) = 0,
then we need to prove that there exist local diffeos φ : V ⊂ U → φ(V ) ⊂ Rm and
ψ : W ⊂ Rn → ψ(W ) such that F̂ = ψ ◦ F ◦ φ−1 has the desired form. We shall abuse
notation and denote F̂ by F as always.
Using appropriate linear transformations, we can ensure that DF (0) is of the form[
Ir×r 0
0 0

]
(why?) We need to use the IFT or ImFT to choose charts (by a nonlinear

transformation) so that this behaviour of DF (0) translates into the same kind of be-
haviour forF itself. Consider themapG : U → Rm givenbyG(x) = (F 1, . . . , F r, xr+1, xr+2, . . .).
Now G is smooth andDG(0) = I . Thus by IFT, G is a local diffeo. Choose φ = G itself.
Then F ◦ φ−1(y) = F ◦G−1(y) = (y1, . . . , yr, F r+1(x(y)), . . .).
Now we use the constant rank hypothesis to conclude that F ◦ φ−1(y) does not depend
on yr+1, . . . (why?). Thus F ◦φ−1(y) = (y, S(y)) for some smooth S. We need to change
coordinates in the target tomake sure thatS becomes zero. Defineψ(u, v) = (u, v−S(u))
so that the second half is 0 iff v = S(u). Thus if ψ is a valid local change of coordinates,
then F̂ (y) = (y, 0). ψ has an explicit inverse and is a diffeo (why?)

Slice charts: We want to model embedded submanifolds by means of the standard
inclusionRm → Rn. ( In particular, we want to say embedded submanifolds are locally
graphs of smooth functions.) This means that we want to choose nice charts to make
this happen. More generally, we say that if U ⊂ Rn is open, then a k-slice of U is
xk+1 = ck+1, xk+2 = ck+2, . . ., i.e., set all except for k coordinates to constants. Alterna-
tively, simply consider the graph of a constant function. If M is a manifold (without
boundary) and S ⊂ M , then S is said to be a local k-slice near p if there exists a chart
(φ, U) near p so that S ∩ U is a k-slice in this chart. ( By the way, we can always make
sure that the constants are 0 by subtraction.)
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Theorem(Slice charts exist for embedded submanifolds): IfS ⊂M is ak-dimensional
embedded submanifold, then S is a local k-slice for all p ∈ S. Conversely, if S ⊂ M
is a subset that is a local k-slice for all p ∈ S, then with the subspace topology S is a
topological k-fold. Moreover, it has a smooth structure making it into a k-dimensional
embedded submanifold. ( As we shall see later, this is the unique-upto-diffeo smooth
structure on S making it into a submanifold.)

6


	Tangent spaces
	Immersions, submersions, and embeddings
	Function theorems on manifolds

