NOTES FOR 10 NOV (FRIDAY)

1. Recap

- (1) We proved the chain homotopy formula.
- (2) Defined De Rham cohomology (and cohomology with compact support). Defined the pullback of cohomology classes.
- (3) Saw some examples of cohomology classes. Just started proving a theorem.

2. DE RHAM COHOMOLOGY

Theorem 2.1. If M is a connected orientable m-manifold, then the map $T[\omega] = \int_M \omega$ gives an isomorphism $H^m_c(M) \simeq \mathbb{R}$.

- *Proof.* (1) True on \mathbb{R} and S^1 : If ω is a 1-form with compact support on \mathbb{R} such that $\int_{\mathbb{R}} \omega = 0$, then define a function $f(x) = \int_{-\infty}^{x} \omega$. Note that $df = \omega$ by the FTC. f has compact support because f(-a) = 0 for a large positive a and since $\int_{\mathbb{R}} \omega = \int_{-a}^{b} \omega$ for all $b \ge a$, we see that f(x) = 0 for x > a. Hence the theorem holds for \mathbb{R} . Likewise, if $\omega = g(\theta)d\theta$ where $g(0) = g(2\pi)$, then $f(\theta) = \int_{0}^{\theta} g(\theta)d\theta$ satisfies $df = \omega$ and $f(0) = 0 = f(2\pi)$. Thus the theorem holds for the circle too.
 - (2) True on \mathbb{R}^m assuming that it is true on S^{m-1} : Let $\omega = f dx^1 \wedge \ldots dx^m$ be a top form with compact support in \mathbb{R}^m such that $\int \omega = 0$. Assume wlog that ω is supported in the unit ball. We know that $\eta = \sum_{i=1}^m (-1)^{i-1} \int_0^1 x^i t^{m-1} f(tx) dt dx^1 \ldots dx^i \wedge dx^m$ satisfies $d\eta = \omega$ (by an exercise). We will modify η by another exact form so that the resulting form has compact support.

Since we want to use that $f(u\vec{n})$ vanishes for large u, define u = |x|t to get

(2.1)
$$\eta(x) = \sum_{i=1}^{m} (-1)^{i-1} \int_{0}^{|x|} u^{m-1} f(u\frac{x}{|x|}) du \frac{1}{|x|^{m}} dx^{1} \dots d\hat{x}^{i} \wedge dx^{m}$$

If |x| > 1, then the integral need be evaluated only till 1. In other words, for large values of |x|, η depends mainly on its values on the unit sphere. We will prove that in fact, $\eta = d\gamma$ for some m-2 smooth form γ outside the unit ball. Let h be a smooth function equal to 1 outside the ball of radius 2 and equal to 0 on the unit ball. Then $h\gamma$ is well-defined on all of \mathbb{R}^m and satisfies, $\omega = d(\eta - d(h\gamma))$ and moreover, $\eta = d(h\gamma)$ outside a compact set.

Indeed, outside the unit ball,

(2.2)
$$\eta(x) = \sum_{i=1}^{m} (-1)^{i-1} \int_{0}^{1} u^{m-1} f(u\frac{x}{|x|}) du \frac{1}{|x|^{m}} dx^{1} \dots dx^{i} \wedge dx^{m}$$

Now define $g: S^{m-1} \to \mathbb{R}$ by $g(x) = \int_0^1 u^{m-1} f(ux) du$. Define $r(x): \mathbb{R}^m - 0 \to S^{m-1}$ as $r(x) = \frac{x}{|x|}$. It is a retraction to the unit circle. Suppose σ' is the natural orientation form on

 S^{m-1} defined as $\sigma'_x(v_1, \dots, v_{m-1}) = \det(\vec{x}, v_1, \dots, v_{m-1}).$ We claim that

$$\frac{1}{|x|^m} dx^1 \dots dx^i \wedge dx^m = r^* \sigma'.$$

Firstly, σ' is the restriction to S^{m-1} of the form $\sigma = \sum (-1)^{i-1} x^i dx^1 \dots dx^i \dots dx^m$. Indeed, $\sigma(v_1, \dots, v_{m-1}) = \sum (-1)^{i-1} x^i dx^1 \dots dx^i \dots dx^m (v_1, \dots, v_{m-1}) = \det(\vec{x}, v_1, \dots, v_{m-1})$ by evaluating along the first row. Secondly, we compute $r^*(\sigma)$:

$$r^*\sigma = \sum (-1)^{i-1} r^*(x^i) dr^*(x^1) \dots$$
$$= \sum (-1)^{i-1} \frac{x^i}{|x|} d(\frac{x^i}{|x|}) \dots$$

which after a tedious calculation (using $d(f/g) = df/g - fdg/g^2$) shows the claim.

Therefore, outside the unit ball, $\eta(x) = g(x)r^*\sigma' = r^*(g\sigma')$. Also, we claim that $\int_{S^{m-1}} g\sigma' = \int_B f dx^1 \dots dx^m = \int \omega_{\mathbb{R}^m} = 0$. Indeed, by Stokes, $\int_{S^{m-1}} g\sigma' = \int_B d(g\sigma) = \int_B \omega = 0$. Now, by the induction assumption, the result holds for m-1 dimensional manifolds. In

Now, by the induction assumption, the result holds for m-1 dimensional manifolds. In particular, it holds for S^{m-1} . Therefore, $g\sigma' = d\gamma$ for some form γ on S^{m-1} . Therefore, $\eta = r^* d\gamma$.

			1
			L
	_	_	L

 $\mathbf{2}$

(2.3)