
NOTES FOR 11 OCT (WEDNESDAY)

1. Lie algebras (cont’d..)

Theorem 1.1. Let G be a Lie group and h ⊂ g is a Lie subalgebra. Then there is a unique connected Lie
subgroup H of G whose Lie algebra is h.

Very brief sketch of the proof : Just from the tangent space at e, we need to produce a full Lie
subgroup ! How does one produce a manifold from such little information ? Well, one produce a
bunch of subspaces ∆a = (La)∗h. Next one shows that this is a distribution (indeed just take a basis at
e and left-translate). Because h is a Lie subalgebra, we see that this distribution is integrable. Now
take the maximal integral submanifold containing the identity (which exists by Frobenius). Prove
that this is a Lie subgroup. Uniqueness is not very hard.

A difficult theorem of Ado shows that every Lie algebra is isomorphic to a subalgebra of GL(N,R).
Suppose φ : G → H is a Lie group homomorphism. Then firstly φ∗ : TeG → TeH is a vector

space map. Secondly, note that φ ◦ La = Lφ(a) ◦ φ by definition. Let Xe ∈ TeG, Ye ∈ TeG be two
Lie algebra elements and X(a) = La∗Xe,Y(a) = La∗Ye be the corresponding unique left-invariant
extensions to G. Let X̃(b) = Lb∗φ∗Xe, Ỹ(b) = Lb∗φ∗Xe be the left-invariant extensions on H. Now
X̃(φ(a)) = φ∗La∗Xe = φ∗(X(a)) and likewise for Y. Actually, the calculation of the lemma above can
be generalised (and simplified) to the following lemma :

Lemma 1.2. Suppose f : M→ N is a smooth map. Assume that X̃, Ỹ are smooth vector fields on N, and X,Y
are smooth vector fields on M such that X̃( f (a)) = f∗(X(a)) and likewise for Y. Then [X̃, Ỹ] f (a) = f∗[X,Y]a.

Proof. Instead of using coordinates, this time we will do it by definition. Let g : f (a) ∈ U ⊂ N → R
be a smooth function. Then, firstly note that

Ỹ f (p)(g) = f∗Yp(g) = Yp(g ◦ f )

⇒ (Ỹg) ◦ f = Y(g ◦ f )(1.1)

and likewise for X. Now

([X̃, Ỹ]g) ◦ f = (X̃Ỹg) ◦ f − (ỸX̃g) ◦ f = X(Ỹg ◦ f ) − Y(X̃g ◦ f )

= X(Y(g ◦ f )) − Y(X(g ◦ f )) = [X,Y](g ◦ f )(1.2)

�

Therefore, given a Lie group homomorphism φ : G → H, φ∗ : g → h induces a Lie algebra
homomorphism.
Here are a couple of examples :

(1) If G = R, H = R with addition as the operation, then φ(s + t) = φ(s) + φ(t). The only smooth
functions of this sort are φ(t) = ct. Therefore, φ∗ : R→ R is multiplication by c.

(2) If G = R, H = S1
⊂ C, then φ(s + t) = φ(s)φ(t). Therefore φ

′

(t) = φ(t)φ
′

(0) and hence
φ(t) = e

√
−1(ct+k). Thus φ∗ is multiplication by

√
−1c.
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(3) If G = S1 and H = R, and φ is smooth (actually even continuous should do), then since the
image is compact and φ(e

√
−1nx) = nφ(e

√
−1x) (and suppose x is irrational), then the image is

0. Thus there could be Lie algebra homomorphisms g→ h that may not come from smooth
Lie group homomorphisms.

However, we have a local result.

Theorem 1.3. Let G and H be Lie groups with Lie algebras g, h. Let Φ : g → h be a homomorphism. Then
there is a neighbourhood of e and a smooth map φ such that φ(ab) = φ(a)φ(b) and φ∗Xe = Φ(Xe). Moreover,
if there are two smooth homomorphisms inducing the same Lie algebra homomorphism and G is connected,
then they agree.

We will omit the proof of this result. Here are some interesting corollaries though.

Corollary 1.4. If two Lie groups G and H have isomorphic Lie algebras, then they are locally isomorphic.

Proof. The Lie algebra isomorphism Φ : g→ h is locally induced around the identity by φ : U ⊂ G→
H according to the previous theorem. By the inverse function theorem, locallyφ is a diffeomorphism
and hence an isomorphism around the identity.
Suppose a ∈ G, then φ ◦ La−1 is the local isomorphism near a. �

Corollary 1.5. A connected Lie group G with an abelian Lie algebra is abelian.

Proof. Any abelian Lie algebra is isomorphic to Rn and hence G is locally isomorphic to Rn. So G is
locally abelian. Every neighbourhood of e generates G. This is a problem in Spivak (will be given
as HW). Thus we are done. �

Corollary 1.6. For every Xe ∈ TeG, there is a unique smooth homomorphism φ : R → G such that
φ∗( ∂∂t t=0) = Xe.

Spivak gave two proofs. They are both instructive.

Proof. Define a Lie algebra homomorphism Φ : R→ g given by Φ(a) = aXe. This induces a Lie group
homomorphism (by the above theorem) locally φ : (−ε, ε)→ G such that φ∗( ∂∂t t=0) = Xe. Now given
a t ∈ R, by composition, one can extend φ to all ofR. More precisely, suppose t = k ε2 + r where k ∈ Z
and |r| < ε

2 . Then

φ(t) = φ(
ε
2

)φ(
ε
2

) . . . φ(
ε
2

)φ(r)(1.3)

if k ≥ 0 and likewise

φ(t) = φ(−
ε
2

)φ(−
ε
2

) . . . φ(−
ε
2

)φ(r)(1.4)

otherwise. Uniqueness also follows from the above theorem. �

Proof. If X̃(a) = La∗Xe is the unique left-invariant extension, then consider the flow of this vector field
through e. Indeed, if φ(t) is the integral curve (such that φ(0) = e, φ

′

(0) = Xe), then it can be extended
to all of R by means of the method of the first proof. Now we know that φ(s)φ(t) is the integral
curve passing through φ(s) at t = 0. The same is true for φ(t + s). By uniqueness, φ(t + s) = φ(t)φ(s).
Thus we have φ : R→ G a homomorphism.
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As for uniqueness, suppose φ : R→ G is a homomorphism such that φ∗( ∂∂t t=0) = Xe, then φ(t) is an
integral curve through e of X̃(a) = La∗Xe and is hence unique. Indeed,

φ∗(
∂
∂t

)( f ) =
d( f ◦ φ)

dt
= lim

h→0

f (φ(t)φ(h)) − f (φ(t))
h

=
d( f ◦ Lφ(t) ◦ φ(u))

du
|u=0 = Lφ(t)∗X( f ) = X̃φ(t)( f ).(1.5)

�

A homomorphismφ : R→ G is called a 1-parameter subgroup of G. There is a unique 1-parameter
subgroup with a given tangent vector at the identity. For R, we know all of them are of the form
φ(t) = ct. For the multiplicative group R − 0, φ(s + t) = φ(s)φ(t) and hence φ(t) = ect. Likewise,
if we want the one-parameter subgroups of GL(n,R), they satisfy φ(s + t) = φ(s)φ(t) and hence
dφ
dt = φ

′

(0)φ(t). The solution of this system is φ(t) = eCt where eA is defined as eA = I + A + A2

2! + . . ..
Indeed, firstly eA is well-defined because if ‖A‖ is the operator norm of A, then ‖A + B‖ ≤ ‖A‖ + ‖B‖
and ‖AB‖ ≤ ‖A‖‖B‖. Thus ‖An

n! ‖ ≤
‖A|n
n! . Therefore the series converges in this norm (and hence in

every norm). Moreover, if AB = BA, then eA+B = eAeB. (Will be given as HW again.) Therefore,

φ
′

(t) = lim
h→0

eC(t+h)
− eCt

h
= eCt lim

h→0

eCh)
− I

h

= eCt lim
h→0

Ch + C2h2

2! + . . .

h
= CeCt lim

h→0
(I +

Ch
2!

+ . . .) = CeCt(1.6)

Motivated by this, for any Lie group G we define the exponential map as exp : g → G : If
Xe ∈ g, extend Xe to X(a) = La∗Xe and let φ(t) be the flow of this field through the identity. Then
exp(Xe) = φ(1). By the property of flows we see that exp(−Xe) = (exp(Xe))−1 and exp((s + t)Xe) =
exp(sXe) exp(tXe). Note that the exponential map on GL(n) is simply the matrix exponential.
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