
NOTES FOR 11 SEPT (MONDAY)

1. Recap

(1) Proved that if X(p) , 0 then X is locally a coordinate vector field.
(2) Defined the Lie derivative LXY, LXω, proved it exists, is bilinear, satisfies the product rule,

and then we produced a formula to compute it.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Lemma 2.1. LXY( f ) = X(Y( f )) − Y(X( f )) = [X,Y]( f )

Proof. X(Y( f )) = X(Yi ∂ f
∂xi ) = X j ∂Yi

∂x j
∂ f
∂xi + X jYi ∂2 f

∂xi∂x j . Therefore [X,Y] = LXY. �

3. Lie bracket, Frobenius theorem

Note that the Lie derivative satisfies the following properties (which are apparent from LXY =
[X,Y].

(1) LX(aY + bZ) = aLXY + bLZY.
(2) LaX1+bX2Y = aLX1Y + bLX2Y
(3) LXY = −LYX and hence LXX = 0.
(4) [X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z,X]] = 0 (the Jacobi identity).

Any vector space g endowed with a map (called the Lie bracket) [, ] : g × g → g is called a Lie
algebra. The space of vector fields is a Lie algebra with bracket LXY = [X,Y].

The next order of business is to provide a geometric interpretation for the “Lie bracket” [X,Y].
Prior to that we prove the following lemma

Lemma 3.1. Let X generate φt and Y generate ψt. Then [X,Y] = 0 if and only if ψs ◦ φt = φt ◦ ψs ∀t, s.

Proof. In local coordinates (x,U), suppose V ⊂ U is an open set and |s|, |t| < εwhere ε is small enough
so that φt(V) ⊂ U, ψs(V) ⊂ U, we see that

∂2

∂s∂t
(ψs ◦ φt − φt ◦ ψs) =

∂2

∂s∂t
(ψ(s, φ(t, p)) − φ(t, ψ(s, p)))

=
∂
∂t

Y(ψ(s, φ(t, p))) −
∂
∂s

X(φ(t, ψ(s, p))) =
∂Yi

∂x j X j(ψs ◦ φt(p))ei −
∂Xi

∂x j Y j(φs ◦ ψt(p))ei(3.1)

Of course if ψs ◦ φt = φt ◦ ψs, then [X,Y] = 0.
For the converse, firstly note that if α is a diffeomorphism, then α∗X is a vector field whenver X is.
Moreover, α∗X generates α ◦ φt ◦ α−1. Indeed,

(α∗X)q( f ) = α∗Xα−1(q) f = Xα−1(q)( f ◦ α) = lim
h→0

( f ◦ α) ◦ φh(α−1(q)) − f (q)
h

(3.2)

This implies that α∗X = X if and only if α ◦ φt = φt ◦ α. (By uniqueness of flows.) Thus, we simply
need to prove that φt∗Y = Y. Now let c(t) = (φt∗Y)(p). This is a map into TpM. Its derivative is

c
′

(t) = limh→0
(φt∗(φh∗)Y)φ−t(p)−φt∗Yφ−t(p)

h = 0 by assumption of [X,Y] = 0. Thus c(t) = c(0) = Y. �
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It is easy to see that [ei, e j] = 0. The following argument shows that the converse is true.

Theorem 3.2. If X1, . . . ,Xk are linearly independent in a neighbourhood of p and [Xi,X j] = 0 ∀ i, j, then
there is a coordinate system around p such that Xi = ei.

Proof. Call the flow of Xα as φα. After a linear change of coordinates we may assume that Xi(p) =
∂
∂ti (p). Now consider the map χ(x1, . . . , xk, yk+1, . . . , ym) = φ1,x1φ2,x2 . . . φk,xk(0, 0, 0 . . . , yk+1, . . . ym). As
before we can use the IFT to show that this is a local diffeomorphism. Moreover, taking derivatives
(and here is where we use the fact that the flows commute because the vector fields do), we see that
Xi = ∂

∂xi . �

Next we prove that LXY is a quantitative obstruction for the flows to commute.

Theorem 3.3. If c(t) = ψ−t ◦ φ−t ◦ ψt ◦ φt(p). Then c
′

(0) = 0 and c
′′

(0) = 2[X,Y]p.

Proof. Choose local coordinates such that X = ∂
∂x1 in a neighbourhood of p. Now

c
′

(t) =
∂ψ−t

∂t
(. . .) +

∂ψ−t

∂x j

∂φ
j
−t

∂t
+
∂ψ−t

∂x j

∂φ
j
−t

∂xk

∂ψk
t

∂t
+
∂ψ−t

∂x j

∂φ
j
−t

∂xk

∂ψk
t

∂xl

∂φl
t

∂t

= −Y(φ−t . . .) −
∂ψ−t

∂x j X j(ψt . . .) +
∂ψ−t

∂x j

∂φ
j
−t

∂xk
Yk(φt) +

∂ψ−t

∂x j

∂φ
j
−t

∂xk

∂ψk
t

∂xl
Xl

c
′

(0) = −Yp − Xp + Yp + Xp = 0

c
′′

(0) =
∂Y
∂x j X j

−
∂Y
∂x j Y j

−
∂Y
∂x j X j +

∂Y
∂x j X j

−
∂X
∂xk

Yk
−
∂X
∂xk

Xk +
∂Y
∂x j X j + . . .

= 2[X,Y](3.3)
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