NOTES FOR 11 SEPT (MONDAY)

1. Recap

(1) Proved that if $X(p) \neq 0$ then X is locally a coordinate vector field.
(2) Defined the Lie derivative $L_{X} Y, L_{X} \omega$, proved it exists, is bilinear, satisfies the product rule, and then we produced a formula to compute it.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Lemma 2.1. $L_{X} Y(f)=X(Y(f))-Y(X(f))=[X, Y](f)$

Proof. $X(Y(f))=X\left(Y^{i} \frac{\partial f}{\partial x^{i}}\right)=X^{j} \frac{\partial Y^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}+X^{j} Y^{i} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}$. Therefore $[X, Y]=L_{X} Y$.

3. Lie bracket, Frobenius theorem

Note that the Lie derivative satisfies the following properties (which are apparent from $L_{X} Y=$ [X, Y].
(1) $L_{X}(a Y+b Z)=a L_{X} Y+b L_{Z} Y$.
(2) $L_{a X_{1}+b X_{2}} Y=a L_{X_{1}} Y+b L_{X_{2}} Y$
(3) $L_{X} Y=-L_{Y} X$ and hence $L_{X} X=0$.
(4) $[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0$ (the Jacobi identity).

Any vector space g endowed with a map (called the Lie bracket) $[]:, g \times g \rightarrow g$ is called a Lie algebra. The space of vector fields is a Lie algebra with bracket $L_{X} Y=[X, Y]$.

The next order of business is to provide a geometric interpretation for the "Lie bracket" $[X, Y]$. Prior to that we prove the following lemma
Lemma 3.1. Let X generate ϕ_{t} and Y generate ψ_{t}. Then $[X, Y]=0$ if and only if $\psi_{s} \circ \phi_{t}=\phi_{t} \circ \psi_{s} \forall t, s$.
Proof. In local coordinates (x, U), suppose $V \subset U$ is an open set and $|s|,|t|<\epsilon$ where ϵ is small enough so that $\phi_{t}(V) \subset U, \psi_{s}(V) \subset U$, we see that

$$
\begin{gather*}
\frac{\partial^{2}}{\partial s \partial t}\left(\psi_{s} \circ \phi_{t}-\phi_{t} \circ \psi_{s}\right)=\frac{\partial^{2}}{\partial s \partial t}(\psi(s, \phi(t, p))-\phi(t, \psi(s, p))) \\
=\frac{\partial}{\partial t} Y(\psi(s, \phi(t, p)))-\frac{\partial}{\partial s} X(\phi(t, \psi(s, p)))=\frac{\partial Y^{i}}{\partial x^{j}} X^{j}\left(\psi_{s} \circ \phi_{t}(p)\right) e_{i}-\frac{\partial X^{i}}{\partial x^{j}} Y^{j}\left(\phi_{s} \circ \psi_{t}(p)\right) e_{i} \tag{3.1}
\end{gather*}
$$

Of course if $\psi_{s} \circ \phi_{t}=\phi_{t} \circ \psi_{s}$, then $[X, Y]=0$.
For the converse, firstly note that if α is a diffeomorphism, then $\alpha_{*} X$ is a vector field whenver X is. Moreover, $\alpha_{*} X$ generates $\alpha \circ \phi_{t} \circ \alpha^{-1}$. Indeed,

$$
\begin{equation*}
\left(\alpha_{*} X\right)_{q}(f)=\alpha_{*} X_{\alpha^{-1}(q)} f=X_{\alpha^{-1}(q)}(f \circ \alpha)=\lim _{h \rightarrow 0} \frac{(f \circ \alpha) \circ \phi_{h}\left(\alpha^{-1}(q)\right)-f(q)}{h} \tag{3.2}
\end{equation*}
$$

This implies that $\alpha_{*} X=X$ if and only if $\alpha \circ \phi_{t}=\phi_{t} \circ \alpha$. (By uniqueness of flows.) Thus, we simply need to prove that $\phi_{t *} Y=Y$. Now let $c(t)=\left(\phi_{t *} Y\right)(p)$. This is a map into $T_{p} M$. Its derivative is $c^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\left(\phi_{t x}\left(\phi_{h x}\right) Y_{\phi_{-t}(p)}-\phi_{t_{t}} Y_{\phi_{-t}(p)}\right.}{h}=0$ by assumption of $[X, Y]=0$. Thus $c(t)=c(0)=Y$.

It is easy to see that $\left[e_{i}, e_{j}\right]=0$. The following argument shows that the converse is true.
Theorem 3.2. If X_{1}, \ldots, X_{k} are linearly independent in a neighbourhood of p and $\left[X_{i}, X_{j}\right]=0 \forall i, j$, then there is a coordinate system around p such that $X_{i}=e_{i}$.
Proof. Call the flow of X_{α} as ϕ_{α}. After a linear change of coordinates we may assume that $X_{i}(p)=$ $\frac{\partial}{\partial t^{i}}(p)$. Now consider the map $\chi\left(x^{1}, \ldots, x^{k}, y^{k+1}, \ldots, y^{m}\right)=\phi_{1, x^{1}} \phi_{2, x^{2}} \ldots \phi_{k, x^{k}}\left(0,0,0 \ldots, y^{k+1}, \ldots y^{m}\right)$. As before we can use the IFT to show that this is a local diffeomorphism. Moreover, taking derivatives (and here is where we use the fact that the flows commute because the vector fields do), we see that $X_{i}=\frac{\partial}{\partial x^{i}}$.

Next we prove that $L_{X} Y$ is a quantitative obstruction for the flows to commute.
Theorem 3.3. If $c(t)=\psi_{-t} \circ \phi_{-t} \circ \psi_{t} \circ \phi_{t}(p)$. Then $c^{\prime}(0)=0$ and $c^{\prime \prime}(0)=2[X, Y]_{p}$.
Proof. Choose local coordinates such that $X=\frac{\partial}{\partial x^{1}}$ in a neighbourhood of p. Now

$$
\begin{gather*}
c^{\prime}(t)=\frac{\partial \psi_{-t}}{\partial t}(\ldots)+\frac{\partial \psi_{-t}}{\partial x^{j}} \frac{\partial \phi_{-t}^{j}}{\partial t}+\frac{\partial \psi_{-t}}{\partial x^{j}} \frac{\partial \phi_{-t}^{j}}{\partial x^{k}} \frac{\partial \psi_{t}^{k}}{\partial t}+\frac{\partial \psi_{-t}}{\partial x^{j}} \frac{\partial \phi_{-t}^{j}}{\partial x^{k}} \frac{\partial \psi_{t}^{k}}{\partial x^{l}} \frac{\partial \phi_{t}^{l}}{\partial t} \\
=-Y\left(\phi_{-t} \ldots\right)-\frac{\partial \psi_{-t}}{\partial x^{j}} X^{j}\left(\psi_{t} \ldots\right)+\frac{\partial \psi_{-t}}{\partial x^{j}} \frac{\partial \phi_{-t}^{j}}{\partial x^{k}} Y^{k}\left(\phi_{t}\right)+\frac{\partial \psi_{-t}}{\partial x^{j}} \frac{\partial \phi_{-t}^{j}}{\partial x^{k}} \frac{\partial \psi_{t}^{k}}{\partial x^{l}} X^{l} \\
c^{\prime}(0)=-Y_{p}-X_{p}+Y_{p}+X_{p}=0 \\
c^{\prime \prime}(0)=\frac{\partial Y}{\partial x^{j}} X^{j}-\frac{\partial Y}{\partial x^{j}} j^{j}-\frac{\partial Y}{\partial x^{j}} X^{j}+\frac{\partial Y}{\partial x^{j}} X^{j}-\frac{\partial X}{\partial x^{k}} Y^{k}-\frac{\partial X}{\partial x^{k}} X^{k}+\frac{\partial Y}{\partial x^{j}} X^{j}+\ldots \\
=2[X, Y] \tag{3.3}
\end{gather*}
$$

