
NOTES FOR 13 OCT (FRIDAY)

1. Recap

(1) Every subalgebra of the Lie algebra of a Lie group is the Lie algebra of a Lie subgroup.
(2) A Lie algebra homomorphism between Lie algebras of Lie groups only locally induces a Lie

group homomorphism.
(3) If two Lie algebras (of Lie groups) are isomorphic, then their corresponding Lie groups are

locally isomorphic.
(4) A connected Lie group with an abelian Lie algebra is abelian.
(5) There is a unique one-parameter subgroup through the identity with tangent vector Xe ∈ g.

(The exponential map is exp(Xe) = φ(1) where φ is that one-parameter subgroup.)

2. Lie algebras (cont’d..)

Proposition 2.1. The exponential map is smooth and a diffeomorphism around 0. If ψ : G→ H is
any smooth homomorphism, then exp ◦ψ∗ = ψ ◦ exp.

Proof. The easiest way to prove smoothness is by using the fact that the flow of a vector field on
a manifold is smooth in both, the time, and the space parameters. Indeed, define a vector field Y
on TeG = Rm × G by Y (Xe, a) = 0 ⊕ La∗Xe. Now Y is a smooth vector field (why? one way is to
write it down in coordinates. We already saw that La∗B is a smooth in a if B is fixed. Y is linear in
Xe. I leave the details to you). Therefore it has a smooth flow α : TeG × G × R → TeG × G. Now
exp(X) = π2 ◦ α(Xe, 0, 1) which is smooth.

We shall prove that exp∗ at the identity is simply the identity map (which is an isomorphism).
By the IFT exp is a local diffeomorphism. Indeed, suppose c(t) = tv is a curve on TeG, then in
note that exp(c(t)) = exp(tv) is the time-1 flow of the vector field Xt = tX. I claim that this is the

same as the time-t flow of X. Indeed, define ψ(s) = φ(ts). Then dψ
ds = tφ

′
(ts) = tX. Therefore,

d exp(tv)
dt |t=0 = v.

Suppose Xe ∈ TeG. Then X̃(b) = Lb∗(ψ∗Xe) is the left-invariant extension on H. I claim that

ψ(φ(t)) where φ(t) is the flow of X(a) = La∗Xe on G is the flow through identity of X̃ on H.

Indeed, ψ∗φ∗(
∂
∂t) = ψ∗X(φ(t)) = ψ∗Lφ(t)∗Xe = Lψ(φ(t))∗ψ∗Xe = X̃. The last equality holds because

ψ(Lab) = ψ(ab) = ψ(a)ψ(b) = Lψ(a)ψ(b). �

As a corollary,

Corollary 2.2. Every 1− 1 smooth homomorphism of Lie groups h : G→ H is an immersion.

Proof. Suppose at a point p ∈ G, there is a vector v ∈ TpG such that h∗v = 0. Then h∗Lp∗(v
iXe,i) = 0

where Xe,i is some basis of TeG. Because h is a homomorphism, Lh(p)∗h∗(v
iXe,i) = 0. This means

that h∗ has a kernel at the identity. So e = exp(h∗(tve)) = h(exp(tve)) which contradicts the
injectivity of h. �

A more interesting corollary is that

Corollary 2.3. Every continuous homomorphism φ : R→ G is smooth.
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This can be generalised to

Corollary 2.4. Every continuous homomorphism φ : G→ H is smooth.

We shall omit the proofs of these corollaries. (The rough idea for the first is to show that φ(sε) =
exp(sX) for some ε and X and use the smoothness of exp. For the second, you use a basis of TeG
and use the first.) Therefore, if two Lie groups are isomorphic by a homeomorphic isomorphism then
there is also a diffeomorphic isomorphism.

3. Tensors and tensor fields

Recall that a vector field is a section of the tangent bundle TM . Also, TM as a set is ∪pTpM
(where TpM can be defined either as the equivalence class of curves or as point-derivations on the
germs of smooth functions). It can be made into a smooth vector bundle of rank-m over M by simply
using the point derivations ∂

∂xi
for a coordinate chart (x, U) to produce local trivialisations. Every

smooth vector field X is locally of the form X = Xi ∂
∂xi

where Xi are local smooth functions. When

you change coordinates to (x̃, U), the new components X̃i = Xj ∂x̃i

∂xj
.

Recall that while we define the cotangent bundle T ∗M in a complicated, weird manner earlier,
more succinctly, it is simply the dual bundle of the tangent bundle, i.e., as a set it is ∪pT ∗

pM where
T ∗
pM is the dual of TpM (i.e. it consists of linear maps from TpM to R). The elements of T ∗

pM are

called one-forms at p. Given a coordinate neighbourhood, there are “dual” one-forms dxi to ∂
∂xi

.

They satisfy dxi(X) = Xi. It can be made into a vector bundle using the trivialisations given by
the dxi. Alternatively, if gαβ are the transition functions of a vector bundle V , then [g−1

αβ ]T are those

of the dual vector bundle V ∗. Just as sections of TM are called vector fields, the sections of T ∗M
should be called “one-form fields” but we abused terminology and called them one-forms. Every

one-form field ω = ωidx
i locally where ωi are locally smooth functions that transform as ω̃i = ωj ∂x̃

i

∂xj
.

Given a one-form and a vector field, one can come up with a function p→ ωp(Xp).
Given a smooth map f : M → N , we came up with f∗ : TpM → Tf(p)N . However, we discussed

that it does not make sense to pushforward vector fields in general. On the other hand, there is a way
to pullback one-forms (and even one-form fields) f∗ : TN∗ → TM∗, i.e., f∗(ωp)(Xp) = ωp(f∗Xp). At
the level of coordinates, f∗v is simply [Df ]~v where ~v is a column vector and [Df ] is the derivative
matrix (whose rows are the gradients of the component functions). On the other hand, f∗ω = ω[Df ]
where ω is a row vector.

One can construct lots of examples of vector fields and one-forms using bump functions and
partitions-of-unity. One reason to care about vector fields is to construct diffeomorphisms. We have
not shown a reason to care about one-forms yet (except perhaps to differentiate functions). (Spoiler
alert : The point is to formulate a fundamental theorem of calculus called Stokes’ theorem which
can in turn be useful while trying to solve PDE on manifolds just like Green’s theorem can be used
to study the Laplace equation on Rn. Another related point is that the cohomology of manifolds has
a particularly nice model using forms.) Lastly, given a smooth function f : M → R, there is anice

way to construct a 1-form field : dfp(Xp) = Xp(f) or more simply, in coordinates, df = ∂f
∂xi
dxi.

The notation dxi, df should remind you of “classical” nonsense like “infinitesimals” that Leibniz,
Newton, and some misguided physicists use. This is the closest we can get to making a statement
like ∆f = f

′
∆x precise. Indeed, df is supposed to detect small changes in f , so it is supposed to

measure the directional derivative along a specified direction v. Thus it is morally supposed to be
a 1-form. So, indeed, just as expected, ∆f = ∂f

∂xi
∆xi and df = ∂f

∂xi
dxi. Classically, tangent vectors

used to be called “contravariant vectors” and cotangent vectors as “covariant vectors”.
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