
NOTES FOR 16 AUG (WEDNESDAY)

1. Maps to manifolds and all that

Given a function F : Rm
→ R such that for all point ~x on the level set L given by F(~x) = 0, the

function satisfies ∇F(~x) , ~0, then L ⊂ Rm is an embedded submanifold !
Proof :Indeed, suppose we take a point p ∈ L. Assume that ∂F

∂x1 (p) , 0 (without loss of generality).
Then by the IFT, x1 = g(x2, . . . , xm) locally on an open subset V ⊂ Rm for some smooth function
g : U ⊂ Rm−1

→ R. Thus, ΦV : V ∩ L → Rm−1 given by (x1, . . . , xm) → (x2, . . . , xm) is a coordinate
chart. If you take another such coordinate chart, where this time x2 = g̃(x1, x3, . . .), then the transition
function is (x2, . . . , xm) → (g(x2, . . . , xm), x3, . . .) which is smooth and whose inverse is (x1, x3, . . .) →
(g̃, x3, . . .). So L is a smooth manifold. Moreover, i : L → Rm is an immersion because in local
coordinates it looks like (x2, . . . , xm)→ (g(x2, . . .), x2, . . .) whose derivative is

∂g
∂x2

∂g
∂x3 . . .

1 0 . . .
0 1 0...
...

...
. . .

(1.1)

which is of course injective as a linear map. Now L is homeomorphic to i(L) because its topology is
derived from i(L). �

More generally, one can prove that if a level set L = ~F−1(~a) of a smooth function ~F : Rm
×Rn

→ Rn

consists of only regular points (i.e. ~a is a regular value), then indeed L is an embedded submanifold
ofRm+n of dimension m. This is the point of defining regular values (their pre-images are embedded
submanifolds).

Harish (I believe) proved that O(n) is a manifold using the above observation. Here are a couple
of other examples.

(1) The sphere is a manifold : f (x1, . . . , xn+1) =
∑

(xi)2
− 1. Now ∇ f = (2x1, . . . , 2xn+1) is never

zero on the level set (because at least one of the xi , 0). Thus the sphere is an n-dimensional
submanifold of Rn+1.

(2) The unitary group U(n) is a submanifold of Cn2
= R2n2

. This will be a part of your HW.

Actually, the phenomenon above is even more general. To see this, we need the following result :

Theorem 1.1 (Constant rank theorem). If f : Mm
→ Nn is a smooth map between smooth manifolds,

such that the rank of f in a neighbourhood of p is a constant equal to k, then there exist coordinate charts
(ΦU = x, p ∈ U), (ΦŨ = x̃, f (p) ∈ Ũ) around p, f (p) respectively such that

ΦŨ ◦ f ◦Φ−1
U (x1, . . . , xm) = (x1, . . . , xk, 0, 0, . . .)(1.2)

(from now onwards, we will omit writing the Φ)
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Proof. Indeed, by assumption in coordinate charts (ΦV = y, p ∈ V), (Φ̃Ṽ = ỹ, Ṽ) we see that the
matrix of Dy f in these coordinates has rank k in V. Therefore, after permuting the coordinates we

can arrange that the first k× k piece of the derivative matrix Dy f , i.e., ∂ f i

∂y j 1 ≤ i, j ≤ k is invertible at p.

Thus, locally, in these coordinates, we have a map F : Rk
×Rm−k

→ Rk given by F(y) = ( f 1, f 2, . . . , f k).
Consider the function G : Rm

→ Rm given by G(y) = (F(y), yk+1, yk+2, . . . , ym). The derivative
DG(p) is invertible (why ?). By the inverse function theorem, G is a local diffeomorphism, i.e.,
~u = (ỹ1, ỹ2, . . . , ỹk, yk+1, . . . , ym) is a valid coordinate chart on M (because it is diffeomorphic to another
valid one). In this new coordinate chart, the map f looks like f (~u) = (u1,u2, . . . ,uk, f k+1, f k+2, . . . , f n).
This is almost what we want (we want to make the other n − k coordinates zero). Notice that
since the rank is exactly k in a neighbourhood of p, the functions f k+1, . . . , f n should not depend on
uk+1 = yk+1,uk+2, . . . ,um. Now we define a map H : Rn

→ Rn given by H(~u) = (u1, . . . ,uk, yk+1
−

f k+1(u1, . . . ,uk), yk+2
− f k+2, . . .). The derivative DHu(p) is invertible (why ?). By the inverse function

theorem H is a local diffeomorphism, i.e., the functions ~v = (u1, . . . ,uk, yk+1
− f k+1(u1, . . . ,uk), yk+2

−

f k+2, . . .) form a coordinate chart for N around f (p). In this new chart, the map f looks like
f (~u) = (u1, . . . ,uk, 0, 0 . . .). This proves the desired result. �

Remark 1.2. If f has full rank at p (i.e. f is either an immersion or a submersion) then it has full rank in
a neighbourhood of p (why ?). Thus, an immersion locally looks like (x1, . . . , xm)→ (x1, . . . , xm, 0, 0 . . .)
and a submersion locally looks like (x1, . . . , xm)→ (x1, . . . , xn).

Remark 1.3. In particular, from the previous remark, it follows that if S is an embedded submanifold
of M, then locally there exist coordinates (x1, . . . , xm) in M such that (x1, . . . , xs) form coordinates for
S.

From now onwards, whenever we say “submanifold”, we mean “embedded submanifold”. Here
is a proposition that helps us construct lots of examples of submanifolds. (It is a generalisation of
the previous method to construct submanifolds ofRn using level sets.) It’s proof is left as an exercise
(use the constant rank theorem).

Proposition 1.4. if f : M → N is a C∞ map having constant rank k on a neighbourhood of f−1(y), then
f−1(y) is either

(1) Empty, or
(2) A closed submanifold of M of dimension n − k.

In particular, if y is a regular value of f and f−1(y) is not empty, then it is an n−m-dimensional submanifold
of M.

Here is another application of the constant rank theorem :

Proposition 1.5. If M1 ⊂ M is an immersed submanifold, f : P → M is a smooth map from a smooth
manifold P such that f (P) ⊂ M1, and f is continuous is considered as a map into M1, then f is also smooth
as a map into M1.

Proof. Since M1 is immersed in M, around a point f (p) ∈M1, there exist coordinates (x1, . . . , xm) on M
and coordinates (y1, . . . , ym1) on M1 such that the inclusion map is i(y1, . . . , ym1) = (x1 = y1, . . . , xm1 =
ym1 , 0, . . .). Let U1 ⊂M be the set consisting of xi = 0 ∀ i ≥ m1 + 1. i−1(U1) is an open subset of M1. By
assumption, i−1

◦ f is continuous, so f−1
◦ i(open) = open. Therefore f−1(U1) ⊂ P is open. Therefore,

f takes a neighbourhood of p ∈ P into U1. Since yi
◦ f are smooth, f is smooth considered as a map

into M1. �
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2. Partition-of-unity, Whitney embedding

Now that we know how to come up with examples of manifolds as submanifolds of RN, it is but
natural to ask 2 questions :

(1) (Embeddability) Is every smooth manifold secretly a submanifold of RN ? i.e., for every M is
there a smooth embedding f : M→ RN ?

(2) (Global intersection) Is every k-dimensional submanifold of RN the zero level set of a smooth
function ~F : RN

→ RN−k such that 0 is a regular value of ~F ?
To kill the suspense, the answer to the first question is YES. In fact, we can choose N to be 2n (but this
is the best one can do because one can prove thatRP2q

cannot be embedded inR2q+1
−1). The answer

to the second is NO. Under some assumptions, the answer to second is also YES but in general (even
after imposing some necessary conditions), it seems to be open (at least as far as I know). To kill
whatever little suspense is remaining, the answer to the first question is provided by the Whitney
embedding theorem. The second question has some obstructions. They can be studied using vector
bundles (in particular, the normal bundle). In fact, one of the points of studying vector bundles is
to answer questions like the second one. But we are getting far ahead of ourselves.

Bump functions are nice tools but we need something better in order to prove things like the
Whitney embedding theorem. The topology necessary to develop good enough bump functions to
prove Whitney allows us to develop another (unrelated) nice tool - partition-of-unity. There are two
definitions of a partition-of-unity. Both are useful in different circumstances.

Definition 2.1. Given a locally finite open cover {Ui} (where i ∈ I) of a manifold M, a collection of
smooth functions ρi : M→ [0, 1] such that supp(φi) ⊂ Ui satisfying

∑
i

φi = 1 is called a partition-of-

unity subordinate to the open cover {Ui}.

Locally finite means that every point p ∈M is in only finitely many Ui. On a paracompact space,
every open cover Uα has a locally finite refinement, i.e., there is another locally finite cover Vβ such
that every open set Vβ is in some Uα (but may be there are fewer Vβ than Uα or perhaps even more).
Recall that our manifolds are required to be paracompact by definition. This gives rise to another
definition.

Definition 2.2. Given an arbitrary open cover Ui (i ∈ I) of a manifold M, a collection of smooth
compactly supported functions ρ j : M → [0, 1] (over a possibly distinct index set j ∈ J) such that
supp(φ j) ⊂ Ui for some i and for every point p ∈ M at most finitely many φ j(p) , 0, satisfying∑

i

φi = 1 is called a partition-of-unity subordinate to the open cover {Ui}.

Usually, when someone says “partition-of-unity subordinate to an open cover”, one means the
second definition. (Some people do not even bother imposing compact support in the second
definition, but we might as well do so.)
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