
NOTES FOR 16 OCT (MONDAY)

1. Recap

(1) Proved that the exponential map is smooth, is a local diffeomorphism near 0 and it “com-
mutes” (in a sense) with Lie group homomorphisms.

(2) Stated some interesting corollaries - Every injective homomorphism is an immersion, and
every continuous homomorphism is smooth.

(3) Revised tangent vectors, vector fields, one-forms, one-form fields (which we shall continue
calling one-forms), etc.

2. Tensors and tensor fields

In physics and engineering, very often things are not simply vectors. For example, the moment
of inertia of a very asymmetric object or the “stress” experienced by such an object under a force
are morally to be thought of as matrices, i.e., objects that have two indices like Iij , Tij etc. What if
tomorrow we find objects that need three indices ? How can we make sense of them on manifolds ?

Even in pure mathematics, given a vector space V , one natural construction (i.e. a functor from
V ect to itself) is V ∗. But there are other constructions of new vector spaces like V ×V for instance.
If you have a vector bundle V over M , you can create V ∗ by taking the new transition functions as
([g−1αβ ]T . If you have W also, then you can create V ⊕W whose transition functions are gαβ ⊕ hαβ
where ⊕ is the direct sum of matrices. Now if you look at multilinear maps V × V × V . . . → R
(there are natural examples of these - like the determinant and the permanent for instance) then
it is not obvious to see what the dimension of the space of multilinear maps is. To remedy this,
recall that one constructs a nice vector space called V ⊗ V ⊗ . . . such that every multilinear map
actually factors uniquely as a linear map from this “tensor product”. Elements of tensor product
spaces are called tensors. So, corresponding to two vector bundles V and W , we can construct a
tensor product bundle as V ⊗W having transition functions [gαβ]⊗ [hαβ] where ⊗ on matrices refers
to the Kronecker product.

So we can inductively look at the vector bundles TM ⊗ TM ⊗ TM . . . or T ∗M ⊗ T ∗M ⊗ T ∗M . . .
or more generally TM ⊗ TM ⊗ . . . TM ⊗ T ∗M ⊗ T ∗M . . .. The elements of these vector spaces are
called tensors and sections of these bundles are called tensor fields or abusing terminology, simply
tensors. (Sections of the tensor product of only TM are called contravariant tensors. Those of purely
T ∗M are called covariant tensors and those of a mixture of them are called mixed tensors.)

Let’s look at them locally and in more detail. Take TM ⊗ TM . While we can construct this
bundle using transition functions, let us take a slightly different approach (which is reminiscent
of our construction of TM). As a set it is ∪pTpM ⊗ TpM . We make it into a vector bundle by

providing local trivialisations : Take any coordinate chart (x, U). Then the vectors ∂
∂xi
⊗ ∂

∂xj
span

TqM ⊗ TqM for all q ∈ U . Thus we can get a bijection from U × Rm ⊗ Rm to ∪p∈UTpM ⊗ TpM .
These subsets are declared to form a basis for the topology. Since U are coordinate neighbourhoods,
we get a locally Euclidean structure such that transition maps are smooth. In fact, this is a vector
bundle. The point is that every element in the fibre looks like Aij ∂

∂xi
⊗ ∂

∂xj
locally. These are

tensors. Smooth sections of TM ⊗ TM are called “rank-2 contravariant tensor fields”. They are
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locally of the form Aij(x) ∂
∂xi
⊗ ∂
∂xj

where the Aij(x) are smooth. If you change coordinates to (x̃, U),

then Ãij = Akl ∂x̃
i

∂xk
∂x̃j

∂xl
. More generally, the same story makes sense for TM ⊗ TM ⊗ TM . . . where

sections locally look like Ai1i2...ik ∂
∂xi1
⊗ ∂
∂xi2

. . . where the Ai1... are smooth. They change upon change

of coordinates as Ãi1i2... = Aj1j2... ∂x̃
i1

∂xj1
∂x̃i2
∂xj2

. . ..

Now consider T ∗M ⊗ T ∗M . As a set it is ∪pT ∗pM ⊗ T ∗pM . Suppose (x, U) is coordinate system,

then dxi ⊗ dxj span TqM for all q ∈ U . Just as before, one can use these to give a vector bundle
structure to T ∗M ⊗ T ∗M . Elements of this sort are called covariant tensors. A covariant tensor
field is a smooth section of this bundle. Locally, a section looks like Aij(x)dxi ⊗ dxj where the

smooth functions Aij(x) transform as Ãij = Akl
∂xk

∂x̃i
∂xl

∂x̃j
. Likewise, one can extend this story to

T ∗M ⊗ T ∗M ⊗ T ∗M . . .. (“Higher rank covariant tensors”.)
Let us recall some linear algebra before going to vector bundles.

(1) Recall that by definition, every multilinear map from V ×W → R factors as a linear map
from V ⊗W → R.

(2) V ⊗W 'W ⊗V : Define T (v⊗w) = w⊗ v and extend it linearly to all of V ⊗W . It is easy
to prove that this is an isomorphism.

(3) (V ⊗W )∗ ' V ∗ ⊗W ∗ : Recall that given an element T ⊗ S ∈ V ∗ ⊗W ∗, one can form a
linear map from V ⊗W → R as (T ⊗ S)(v ⊗w) = T (v)S(w) (and linearly extending it from
decomposable vectors to all of V ⊗W ). By linearity, one can thus get a map V ∗ ⊗W ∗ →
(V ⊗W )∗. In fact, this canonical map is an isomorphism (dimension count for instance).
Indeed, by induction this holds for any number of factors.

(4) Given any rank-k covariant tensor T ∈ V ∗ ⊗ V ∗ . . . V ∗ and a rank l covariant tensor S ∈
V ∗⊗V ∗ . . . V ∗, we can get a rank k+ l covariant tensor T ⊗S which acts on (v1⊗ . . .⊗ vk+l)
as T ⊗ S(v1 ⊗ . . .⊗ vk+l) = T (v1 ⊗ vk)S(vk+1 ⊗ . . . vk+l). Of course T ⊗ S 6= S ⊗ T but it is
easy to see that T ⊗ (S ⊗ U) = (T ⊗ S)⊗ U .

(5) Because V ∗∗ = V for any finite dimensional vector space, one can interpret elements of
V⊗V⊗V . . . as linear functionals on V ∗⊗V ∗ . . ., i.e., (v1⊗v2 . . .)(T1⊗T2 . . .) = T1(v1)T2(v2) . . .
extended linearly.

(6) Map(V,W ) 'W⊗V ∗. Indeed, given an element w⊗T ∈W⊗V ∗, we can define a linear map
S : V →W as S(v) = T (v)w. By linearly extending, one has a map W ⊗ V ∗ →Map(V,W ).
It is easy to prove that this is an isomorphism. Indeed, given any linear map S : V → W ,
here is a multilinear functional on W ∗ × V : S̃(T, v) = T (S(v)). Thus every linear map
V →W gives a linear functional on W ∗ ⊗ V , i.e., it corresponds to an element of W ⊗ V ∗.

(7) There is a canonical map - Cont : V ⊗ V ∗ → R : Indeed, linearly extend the map Cont(v ⊗
T ) = T (v). Likewise, suppose we take V k

l = V ⊗ V ⊗ (k times) ⊗ V ∗ . . . (l times) then

we have several such “contraction” maps like Cont32 : V k
l → V k−1

l−1 defined by Cont32(v1 ⊗
v2 . . . vk ⊗ w1 ⊗ w2 . . .) = w2(v3)v1 ⊗ v2 ⊗ v4 . . .⊗ w1 ⊗ w3 ⊗ . . ..


	1. Recap
	2. Tensors and tensor fields

