NOTES FOR 17 NOV (FRIDAY)

1. Recap

- (1) Proved a formula for the degree in terms of preimages of a regular value.
- (2) Computed the degree of the antipodal map.
- (3) Proved that homotopic maps induce the same map on cohomology and hence the degree is a homotopy invariant.
- (4) Proved that if a manifold deformation retracts smoothly to another, then they have the same cohomology.
- (5) Proved the Hairy Ball theorem.

2. Degree of proper maps

Here is another fun application of the theory of degree.

Theorem 2.1. Every $f(z) = z^n + a_1 z^{n-1} + ...$ is a polynomial from \mathbb{C} to itself, then f has a complex root.

Proof. We will not prove this fully. Instead, we sketch the main steps :

Using the stereographic projection, extend f as a smooth map from the sphere to itself. Note that $f(\infty) = \infty$. By means of a calculation, you can show that f is orientation-preserving away from f' = 0, i.e., away from critical points. Therefore, the degree of f is n (why?). Hence, $f^{-1}(0)$ is not empty.

Now we return to calculating some De Rham groups.

Theorem 2.2. For 0 < k < n - 1, we have $H^k(\mathbb{R}^n - 0) = H^k(S^{n-1}) = 0$.

Proof. We induct on n. The base case is \mathbb{R}^3 . Suppose ω is a closed 1-form on $\mathbb{R}^3 - (0, 0, 0)$. Let A be the set outside the non-negative z-axis and B be outside the non-positive z-axis. Note that A and B are star-shaped and hence $\omega = df_a$ and $\omega = df_b$ on them. Note that $d(f_a - f_b) = 0$ on $A \cap B$. Thus, $f_a = f_b + c$ where c is a constant on $A \cap B$. Now define $f = f_a$ on A and $f_b + c$ on B. Thus $\omega = df$.

If ω is a closed 1-form on $\mathbb{R}^4 - 0$, then an argument similar to the above shows that $\omega = df$. Thus, assume ω is a closed 2-form on $\mathbb{R}^4 - 0$. Then, just as above, $\omega = d\eta_a$, $\omega = d\eta_b$ with $d(\eta_a - \eta_b) = 0$. Now $H^1(A \cap B) = H^1((\mathbb{R}^3 - 0) \times \mathbb{R}) = 0$. Thus, $d(\eta_a - \eta_b) = d\lambda$ for some form λ on $A \cap B$. Thus, define $\eta = \eta_a - d(\rho_b \lambda)$ on A and $\eta = \eta_b + d(\rho_a \lambda)$ on B where ρ_a, ρ_b is a partition-of-unity. Now $\omega = d\eta$.

The general inductive step is similar.

We do just one more calculation of cohomology.

Theorem 2.3. For $0 \le k < n$, we have $H_c^k(\mathbb{R}^n) = 0$.

Proof. The k = 0 case is straightforward.

Let ω be a k-form with compact support. Of course, $\omega = d\eta$ for some η . We want to write $\eta = d\gamma$ outside a large ball. Suppose B is a closed ball containing the support of ω . Then the exterior of

the ball is diffeomorphic to $\mathbb{R}^n - 0$. Thus $\eta = d\gamma$ on it. Thus $\eta - d(h\gamma)$ where h is a bump function is compactly supported and $\omega = d(\eta - d(h\gamma))$.