
NOTES FOR 1 NOV (WEDNESDAY)

1. Recap

(1) Proved that orientability is equivalent to finding a nowhere vanishing top form.
(2) Defined the exterior derivative d locally and proved (using two different ways) that it is

defined globally and satisfies some properties (including d2 = 0).

2. Closed and exact forms, and why you should care

d commutes with pullbacks.

Proposition 2.1. If f : M → N is smooth, and ω is a k-form on N , then f∗(dω) = d(f∗ω).

Proof. Suppose ω = ωIdx
I . Then

f∗(dωI ∧ dxI) = f∗(dωI) ∧
∂f i1

∂xj1
∂f i2

∂xj2
. . . dxJ

= f∗dωI ∧ df i1 ∧ df i2 . . . = d(ωI ◦ f) ∧ df I = d(ωI ◦ fdf I) = df∗ω,

because d(η ∧ dα) = dη ∧ dα + (−1)kη ∧ d2α = dη ∧ dα and f∗dg(Xp) = dg(f∗Xp) = f∗Xp(g) =
Xp(g ◦ f) = df∗g(Xp). �

We introduce some terminology here : A form ω is closed if dω = 0 and exact if ω = dη. Clearly
exact forms are closed. A more interesting question is “are closed forms exact?”

In terms of vector fields in R3, first of all, identifying a vector field ~F = (F1, F2, F3) with a 1-form

A = F1dx
1 +F2dx

2 +F3dx
3 we see that dA = (−∂F1

∂x2
+ ∂F2

∂x1
)dx1 ∧ dx2 + . . .. Now identifying dx∧dx2

with k̂ and likewise, we see that dA is identified with ∇× ~F . So if ∇× ~F = ~0, is ~F = ∇f ? That
is, if dA = 0, then is A = df ? Likewise, if Θ is a 2-form, Θ = Θ1dx

2 ∧ dx3 + . . . (which is identified

with a vector field ~T = (T1, T2, T3), then dΘ =
∑

i
∂Θi

∂xi
dx1 ∧ dx2 ∧ dx3 (which is identified with ∇. ~T .

So if dΘ = 0, is Θ = dA ? i.e. if ∇. ~T = 0, is ~T = ∇× ~F?
Actually, this question is interesting even in 2-D. If A = Fdx+Gdy, and if dA = (∂G∂x−

∂F
∂y )dx∧dy =

0, is A = df , i.e., (F,G) = ∇f ? Surely, if A is defined on all of R2, then define f(x, y) =∫ 1
0 (F (tx, ty)x+G(tx, ty)y)dt. It is easy to verify that ∇f = (F,G). In fact, this is true even if replace

(tx, ty) with any other path. (The function f is called the potential energy of the conservative force
(F,G).) ]

However, motivated by physical considerations, one can define fields on R2 −~0 that are not exact
despite being closed. Take A = −y√

x2+y2
dx + x√

x2+y2
dy. This form is closed. However it cannot be

exact. Indeed, if A = df , i.e., ~F = ∇f , then

∫
S1

~F . ~dr = 2π 6= 0 =

∫
∇f. ~dr. Moreover, if A is any

closed form, then, suppose c is a number such that
∫
S1
~F . ~dr = c

∫
S1

−y√
x2+y2

dx+ x√
x2+y2

dy, then we

claim that ω = A− c( −y√
x2+y2

dx+ x√
x2+y2

dy) = df .

Sktech of proof : Indeed, suppose ~W is the corresponding vector field. Define f(x, y) =
∫
γ(t)

~W. ~dr

where γ(t) is any smooth 1-1 path in R2 −~0 taking (1, 1) to (x, y). If γ̃(t) is another such arc, then
1
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γ
~W. ~dr−

∫
γ̃
~W. ~dr can be broken up into a sum of integrals over closed curves to which one may use

Green’s theorem. This is annoying to make rigorous, but there is a better way to do these things.....
These considerations seem to show that whether a closed form is exact or not seems to depend on

the shape of the domain. In fact,

Theorem 2.2. Any smooth closed k-form on Rn is exact, i.e., if dω = 0, then ω = dη. (Poincaré’s
lemma)

Proof. If ω = ωI(x)dxI , then define

η =

∫ 1

0
tk−1dt

∑
I

ωI(tx)(xi1dxi2 ∧ . . .− xi2dxi1 ∧ . . .+ . . .)(2.1)

The claim is that dη = ω. Let’s write sketch the proof for a 2-form in R4 just for illustration :
ω = ω12dx

1 ∧ dx2 + . . .. Thus

η =

∫ 1

0
tdt

∑
i,j

ωij(tx)(xidxj − xjdxi)

dη =

∫ 1

0
dt

∑
i,j,k

(
∂ωij(tx)

∂xk
dxkt2(xidxj − xjdxi) + 2tω(tx))

(2.2)

Since dω = 0, i.e.,

∂ω12

∂x3
=
∂ω13

∂x2
− ∂ω23

∂x1
(2.3)

and likewise. Thus,∑
i<j,k

∂ωij(tx)

∂xk
dxk(xidxj − xjdxi) + . . . =

∂ω12(tx)

∂x3
dx3 ∧ (x1dx2 − x2dx1) +

∂ω13(tx)

∂x2
dx2 ∧ (x1dx3 − x3dx1)

+
∂ω23(tx)

∂x1
dx1 ∧ (x2dx3 − x3dx2) + . . . = 2(

∂ω12

∂x3
x3dx1 ∧ dx2 + . . .) =

d(t2ω(tx))

dt
(2.4)

�

Actually, note that we simply needed a star-shaped domain containing the origin (i.e. every point
can be connected by a straight line from the origin) for the above argument to work. In fact, if you
jazz it up further, it can be used to show that every contractible manifold satisfies the property that
all closed forms are exact. This is there in Spivak but we shall skip it (at least for now).

3. Integration of top forms over manifolds

As discussed earlier, it appears that the only things one can integrate over manifolds are top forms
ω. Also, it seemed that orientability is an important requirement.

Before going into that, in Rm, recall the change of variables formula :∫
Rm

f(x1, . . . , xm)dx1dx2 . . . =

∫
Rm

f(xi(x̃j))| det(
∂xi

∂x̃j
)|dx̃1dx̃2 . . .(3.1)

On the other hand, in R,
∫ b
a f(x)dx =

∫ g−1(b)
g−1(a)

f(g(y))g
′
(y)dy. So where did the | sign disappear ?

The point is that in Rm, we conventionally always integrate from the lower limit to the higher limit,

i.e., if g−1(a) = 5 and g−1(b) = 3, we prefer writing −
∫ 5

3 f ◦ gg
′dy and since g′ 6= 0, this means g is
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decreasing and hence −g′ = |g′|. So we chose an “orientation” (i.e. smaller number below and bigger
number above) to introduce or get rid of the absolute value.
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