
NOTES FOR 1 SEPT (FRIDAY)

1. Recap

(1) Defined the tangent space as point derivations on the algebra of germs of smooth functions.
(2) Defined the tangent bundle as a set and stated (and proved) a theorem that made into a

vector bundle in an essentially unique manner. Also proved that f∗ corresponded to simply
the derivative matrix of f , i.e., [D f ] when looked at locally.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Remark 2.1. Indeed, the above proof shows that vector fields (i.e. smooth sections of TM) do satisfy
the properties we want. In particular, locally, X = Xi(x)ei(x) where Xi are smooth functions.

Here are some examples of tangent bundles :
(1) As we saw, the tangent bundle of Rn is isomorphic to a trivial bundle Rn

×Rn.
(2) TS1 is isomorphic to S1

×R. Indeed, take the open interval of angles θ ∈ (0, 2π). This gives a
coordinate chart on S1. Choosing θ̃ ∈ (−π, π) gives another coordinate chart and these two
cover S1. On the overlap, θ̃ + π = θ. The coordinate vector fields X1 =

∂
∂θ̃

and X2 =
∂
∂θ are

related by X2 =
∂θ̃
∂θX1 = X1 on the overlap. Therefore, the vector field X = X1 on U1 and X2 on

U2 is well-defined as a smooth vector field on all of S1. Moreover, X , 0 anywhere. Therefore
TS1 is trivial. Manifolds whose tangent bundles are trivial are called “parallelizable”.

(3) The argument above shows that T(Torus) is also trivial. (Why?)
(4) I claim that TS2 is not trivial. Indeed, if it were, then there should be a vector field X that

is nowhere zero. (In fact, there should be two vector fields that are linearly independent
everywhere.) But this contradicts the so-called Hairy-Ball theorem (which we may see later
on if time permits).

(5) If M ⊂ Rn is a submanifold given by M = f−1(0) where 0 is a regular value of a smooth
function f : Rn

→ R, then TM is isomorphic to a subset S ⊂ Rn
×Rn consisting of (~p, ~v) such

that f (~p) = 0 and 〈∇ f (~p), ~v〉 = 0.
First of all S is a manifold, in fact a vector bundle in its own right (with the projec-
tion map being π1 : S ⊂ Rn

× Rn
→ Rn given by π1(~p, ~v) = ~p). Indeed, since F :

Rn
× Rn

→ R2 given by F(~p, ~v) = ( f (~p), 〈∇ f (~p), ~v〉) has (0, 0) has a regular value (why?),
S is a submanifold of Rn

× Rn (and of course π1 is a smooth map). Note that π−1
1 (~p) is

the collection of all vectors ~v orthogonal to ∇ f (p) and is hence a vector space. We will
prove the local triviality property (and hence make S into a vector bundle). Indeed, sup-
pose ∂ f

∂x1 (~p) , 0. By the IFT (x2, . . . , xn) form a coordinate chart for M on an open set
U near ~p and x1 = g(x2, . . . , xn) near p. Consider the map h : U × Rn−1

→ S given by

h(x2 . . . , xn,w1, . . . ,wn−1) = (g(x2, . . . , xn), x2, . . . , xn,
n−1∑
i=1

∂g
∂xi+1

wi,w1,w2, . . . ,wn−1). This is a dif-

feomorphism that is linear on the fibres (why?) Therefore S is a vector bundle. Moreover,
the map c~p,~v(t) = (g(~p + (tw2, . . . , twn)), p2 + tw2, . . . , pn + twn) (where v2 = w2, v3 = w3 . . .) is a

1



2 NOTES FOR 1 SEPT (FRIDAY)

smooth curve whose image lies on M and passes through p.
Now consider the map t : S → TM =

∐
p∈M

TpM given by t(~p, ~v) = [c~p,~v] ∈ TpM. This is an

isomorphism (why?)
Now let us look at examples of vector fields in Rn:

(1) ~X(x, y) = (1, 1) on R2. This is a “constant” vector field.
(2) ~X(x, y) = ( −y

√
x2+y2

, x√
x2+y2

). This curls around the origin. However, strangely enough, ∇× ~X =

0. (So the curl measures a very subtle form of “curling around”.) Even more strangely, there
is no function f such that ∇ f = ~X. (Indeed, if there was such a function, then

∫
~X. ~dr over a

circle should be 0 but it isn’t.) This is a phenomenon that if time permits towards the end of
this course, we may study. It goes by a fancy name called “De Rham cohomology”. By the
way, this vector field, when restricted to the unit circle, is a tangent vector field on S1. It is
nowhere vanishing. (Indeed, it is exactly the same as ∂

∂θ .)
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