NOTES FOR 1 SEPT (FRIDAY)

1. Recap

(1) Defined the tangent space as point derivations on the algebra of germs of smooth functions.
(2) Defined the tangent bundle as a set and stated (and proved) a theorem that made into a vector bundle in an essentially unique manner. Also proved that f_{*} corresponded to simply the derivative matrix of f, i.e., $[D f]$ when looked at locally.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Remark 2.1. Indeed, the above proof shows that vector fields (i.e. smooth sections of $T M$) do satisfy the properties we want. In particular, locally, $X=X^{i}(x) e_{i}(x)$ where X^{i} are smooth functions.

Here are some examples of tangent bundles :
(1) As we saw, the tangent bundle of \mathbb{R}^{n} is isomorphic to a trivial bundle $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
(2) $T S^{1}$ is isomorphic to $S^{1} \times \mathbb{R}$. Indeed, take the open interval of angles $\theta \in(0,2 \pi)$. This gives a coordinate chart on S^{1}. Choosing $\tilde{\theta} \in(-\pi, \pi)$ gives another coordinate chart and these two cover S^{1}. On the overlap, $\tilde{\theta}+\pi=\theta$. The coordinate vector fields $X_{1}=\frac{\partial}{\partial \tilde{\theta}}$ and $X_{2}=\frac{\partial}{\partial \theta}$ are related by $X_{2}=\frac{\partial \tilde{\theta}}{\partial \theta} X_{1}=X_{1}$ on the overlap. Therefore, the vector field $X=X_{1}$ on U_{1} and X_{2} on U_{2} is well-defined as a smooth vector field on all of S^{1}. Moreover, $X \neq 0$ anywhere. Therefore $T S^{1}$ is trivial. Manifolds whose tangent bundles are trivial are called "parallelizable".
(3) The argument above shows that T (Torus) is also trivial. (Why?)
(4) I claim that $T S^{2}$ is not trivial. Indeed, if it were, then there should be a vector field X that is nowhere zero. (In fact, there should be two vector fields that are linearly independent everywhere.) But this contradicts the so-called Hairy-Ball theorem (which we may see later on if time permits).
(5) If $M \subset \mathbb{R}^{n}$ is a submanifold given by $M=f^{-1}(0)$ where 0 is a regular value of a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then $T M$ is isomorphic to a subset $S \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ consisting of (\vec{p}, \vec{v}) such that $f(\vec{p})=0$ and $\langle\nabla f(\vec{p}), \vec{v}\rangle=0$.
First of all S is a manifold, in fact a vector bundle in its own right (with the projection map being $\pi_{1}: S \subset \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\left.\pi_{1}(\vec{p}, \vec{v})=\vec{p}\right)$. Indeed, since F : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ given by $F(\vec{p}, \vec{v})=(f(\vec{p}),\langle\nabla f(\vec{p}), \vec{v}\rangle)$ has $(0,0)$ has a regular value (why?), S is a submanifold of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (and of course π_{1} is a smooth map). Note that $\pi_{1}^{-1}(\vec{p})$ is the collection of all vectors \vec{v} orthogonal to $\nabla f(p)$ and is hence a vector space. We will prove the local triviality property (and hence make S into a vector bundle). Indeed, suppose $\frac{\partial f}{\partial x^{1}}(\vec{p}) \neq 0$. By the IFT $\left(x^{2}, \ldots, x^{n}\right)$ form a coordinate chart for M on an open set U near \vec{p} and $x^{1}=g\left(x^{2}, \ldots, x^{n}\right)$ near p. Consider the map $h: U \times \mathbb{R}^{n-1} \rightarrow S$ given by $h\left(x^{2} \ldots, x^{n}, w^{1}, \ldots, w^{n-1}\right)=\left(g\left(x^{2}, \ldots, x^{n}\right), x^{2}, \ldots, x^{n}, \sum_{i=1}^{n-1} \frac{\partial g}{\partial x^{i+1}} w^{i}, w^{1}, w^{2}, \ldots, w^{n-1}\right)$. This is a diffeomorphism that is linear on the fibres (why?) Therefore S is a vector bundle. Moreover, the map $c_{\vec{p}, \vec{v}}(t)=\left(g\left(\vec{p}+\left(t w^{2}, \ldots, t w^{n}\right)\right), p^{2}+t w^{2}, \ldots, p^{n}+t w^{n}\right)\left(\right.$ where $\left.v^{2}=w^{2}, v^{3}=w^{3} \ldots\right)$ is a
smooth curve whose image lies on M and passes through p.
Now consider the map $t: S \rightarrow T M=\coprod_{p \in M} T_{p} M$ given by $t(\vec{p}, \vec{v})=\left[c_{\vec{p}, \vec{v}}\right] \in T_{p} M$. This is an isomorphism (why?)
Now let us look at examples of vector fields in \mathbb{R}^{n} :
(1) $\vec{X}(x, y)=(1,1)$ on \mathbb{R}^{2}. This is a "constant" vector field.
(2) $\vec{X}(x, y)=\left(\frac{-y}{\sqrt{x^{2}+y^{2}}}, \frac{x}{\sqrt{x^{2}+y^{2}}}\right)$. This curls around the origin. However, strangely enough, $\nabla \times \vec{X}=$ 0 . (So the curl measures a very subtle form of "curling around".) Even more strangely, there is no function f such that $\nabla f=\vec{X}$. (Indeed, if there was such a function, then $\int \vec{X} . \overrightarrow{d r}$ over a circle should be 0 but it isn't.) This is a phenomenon that if time permits towards the end of this course, we may study. It goes by a fancy name called "De Rham cohomology". By the way, this vector field, when restricted to the unit circle, is a tangent vector field on S^{1}. It is nowhere vanishing. (Indeed, it is exactly the same as $\frac{\partial}{\partial \theta}$.)

