
NOTES FOR 17 NOV (FRIDAY)

1. Recap

(1) Proved the fundamental theorem of algebra.
(2) Calculated the De Rham cohomologies Hk(Sn) and Hk

c (Rn).

2. Riemannian geometry

So far, we have studied differential topology. But we have not even proven something like the
Theorema Egregium (you can’t draw a to-scale map of Yeshwantpur on a piece of paper). For doing
things like that, you need to do geometry. So you need to measure distances and angles. At the very
least, you would need to know how long tangent vectors are.

Given a real vector space V , a symmetric positive-definite bilinear form g : V ×V → R defines an in-
ner product. Inner products satisfy the extremely important Cauchy-Schwartz inequality |g(V,W )| ≤√
g(V, V )

√
g(W,W ) and the triangle inequality

√
g(V +W,V +W ) ≤

√
g(V, V ) +

√
g(W,W ). If

e1, . . . , en is a basis of V , then g(V,W ) = g(V iei,W
jej) = V iW jg(ei, ej) = V igijW

j for some sym-
metric positive-definite matrix gij = g(ei, ej). In terms of matrices, g(V,W ) = V T gW . Suppose you

change your basis to ẽi, then the matrix change to g̃ such that Ṽ T g̃W̃ = V T gW and hence if Ṽ = PV
for an invertible matrix P , then P T g̃P = g. Sylvester’s theorem in linear algebra shows that you can
always choose a P so that g̃ = I. Alternatively, by Gram-Schmidt orthogonalisation, you can always
find an orthonormal basis. From now onwards, assume that e1, . . . en is an orthonormal basis, i.e.,
gij = δij . Note that given an inner product on V , it induces one on V ∗. Indeed, note that the map
T : V → V ∗ given by v → g(v,) (i.e. T (v)i = gijv

j) is an isomorphism if V is finite-dimensional. So,
given an inner product on V , we have one on V ∗ given by 〈T (v), T (w)〉 = g(v, w). If ei is a basis and
ei∗ the dual basis, then g̃ij = g̃(ei∗, ej∗) can be calculated as follows : gijv

j = (0, 0, .., 1...) implies
that v = g−1(0, 0, .., 1, 0, 0, 0). Thus, g̃ij = [ei]

T (g−1)T gg−1[ej ] = [ei]
T (g−1)[ej ]. Therefore the dual

inner product as matrix is g−1. Typically, we write it in coordinates as gij . Thus, gijgjk = δik.
Note that g : V × V → R can be thought of as an element of (V ⊗ V )∗ = V ∗ ⊗ V ∗. Indeed,

g = gij(e
i∗)⊗ (ej∗) =

∑n
i=1 e

i∗ ⊗ ei∗. Also, g̃ = gijei ⊗ ej (where we are identifying V ' V ∗∗).
Suppose S ⊂ V is a subspace. Then an inner product on V induces an inner product on S.

Suppose e1, . . . , es is a basis of S, then, Gram-Schmidt would make this an orthonormal basis of S.
One can this to an orthonormal basis of V (extend it to any basis and orthonormalise).

Notice that if we are given such an inner product, we can produce an element of Ωn(V ). Indeed,
define vol = e1∗∧e2∗∧e3∗ . . .. Suppose ẽi is another orthonormal basis such that it has the same orien-
tation as ei, i.e., ẽi∗ = P ije

j∗ where the matrix P has determinant 1, then ẽ1∗∧ . . . = det(P )vol = vol.

If ẽi is not an orthonormal basis and suppose gµν = g̃(ẽµ∗, ẽν∗) meaning that g−1 = P TP . Hence

±
√
|det(g)| = det(P ). Thus, vol = ±

√
| det(g)|ẽ1∗ ∧ . . ..

Now we carry this over to general vector bundles V over M . A metric g on a vector bundle V
over M is a smooth section of V ∗ ⊗ V ∗ such that on each fibre it is symmetric and positive-definite.
In other words, suppose ei is a trivialisation of V over U and ei∗ the dual trivialisation of V ∗ over
U , then g(p) = gij(p)e

i∗ ⊗ ej∗ where gij : U ⊂M → GL(r,R) is a smooth matrix-valued function to
symmetric positive-definite matrices. Now we prove that every vector bundle V admits a metric.
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Theorem 2.1. Every rank-r real vector bundle V over a manifold M admits a smooth metric g.

Proof. Cover M with trivialising locally finite open sets Uα. Let ρα be a partition-of-unity subor-

dinate to this cover. Now define gα =
r∑
i=1

ei∗α ⊗ ei∗α . Define g =
∑

α ραgα. This is clearly a smooth

section which is symmetric. We only need to check that it is positive-definite. Indeed, if A and B are
positive-definite, a, b > 0 numbers, then (aA+bB)(v, v) = aA(v, v)+bB(v, v) ≥ 0 with equality if and
only if v = 0. (Note that if positive-definiteness was not imposed, then g may be degenerate.) �

A pleasant corollary is the following :

Corollary 2.2. If V over M is a rank r real vector bundle, then V ' V ∗ as bundles. (The isomor-
phism is not natural though.)

Proof. Put a metric g on V . Then define the map v ∈ Vp → gp(v,) ∈ V ∗
p . This is an isomorphism

at the level of the fibres. It is also smooth, because after choosing trivialisations ei, e
∗i we see that

vi → gij(p)v
j which is smooth because g is so. �

Another corollary is

Corollary 2.3. If L is a line bundle over M , then L is trivial if and only if it is orientable.

One proof of this is : V is orientable if and only if there is a nowhere vanishing section of ΩrV .
In the case of a line bundle this boils down to the above. Another proof is :

Proof. If it is trivial, it is orientable. Suppose it is orientable with a smoothly varying orientation µ.
Then choose a metric g on V . At every point p, there is a unique vector s(p) ∈ π−1(p) having unit
length and pointing along µ(p). This gives a smooth nowhere vanishing section. �
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