
NOTES FOR 20 OCT (FRIDAY)

1. Recap

(1) Defined the tensor product of vector bundles (in particular, defined the bundles of covariant,
contravariant, and mixed tensors).

(2) Looked at how tensor fields look like locally (and how they change when you change coordi-
nates).

(3) Recalled some linear algebra. Most importantly, we saw that Map(V,W ) ' W ⊗ V ∗ and
defined the contraction operation that took (k, l) tensors to (k − 1, l − 1) tensors.

2. Tensors and tensor fields

Most of the above linear algebra can be recast in the index notation we have been using so far.
When it comes to contractions, you can see the advantage of Einstein’s notation.

(1) V ⊗W ' W ⊗ V : Suppose A = Aiµei ⊗ fµ. Then T (A) = Aiµfµ ⊗ ei is the isomorphism,
i.e., (T (A))µi = Aiµ.

(2) (V ⊗W )∗ ' V ∗ ⊗W ∗ : Aiµ(e⊗ f)iµ∗ → Aiµ(ei)∗ ⊗ (fµ)∗, i.e., Aiµ → Aiµ
(3) If T = Ti1i2...ik(ei1)∗⊗(ei2)∗ . . . and S = Sj1j2...jl(e

j1)∗⊗(ej2)∗ . . . then T⊗S = Ti1...ikSj1...jl(e
i1)∗⊗

. . ., i.e., (TI , SJ)→ TISJ (we sometimes use capital letters to denote multi-indices).
(4) Map(V,W ) ' W ⊗ V ∗ : If T ∈ Map(V,W ), then given a basis ei for V and fµ for W , a

basis for Map(V,W ) is hiµ(v) = vifµ. In this basis, T = Tµi h
i
µ. The isomorphism is given by

G(Tµi h
i
µ) = Tµi fµ ⊗ (ei)∗, i.e., (G(T ))µi = Tµi .

(5) Cont : V ⊗ V ∗ → R. If A = Aijei ⊗ (ej)∗, then Cont(A) = Aii. More generally, if you have

Aabc...αβγ... then Cont31(A) will be Aabc...cβγ.... This is one of the points of using the Einstein

notation. You can keep track of contractions easily. (This is not some abstract requirement.
If you study Riemannian geometry, you have to do contractions all the time. For example,
the Ricci tensor is a contraction of the Riemann curvature tensor.)

Now we can translate these kinds of statements to vector bundles V,W (in particular, tensor bundles)
on a manifold.

(1) First of all, note that any function A : V ect → Func that is linear over smooth functions
induces a unique smooth 1-form ω. Indeed, suppose Xp ∈ TpM . Choose a coordinate system

(x, U) and extend Xp to a smooth vector field on U as X = (Xp)
i ∂
∂xi

. Suppose ρ : U → R is
a smooth bump function equal to 1 on p, then Y = ρX extends Xp to a smooth vector field
on M . Define ωp : TpM → R as ωp(Xp) = A(X).
(a) ωp is independent of choices : It is enough to prove that A(X)(p) = 0 if X(p) = 0.

Firstly, note that if Y = Z on any neighbourhood U of p, then A(Y )(p) = A(Z)(p)
(this property is called locality by physicists). Indeed, suppose f : M → R is a bump
function equal to 1 on p and with support in U , then fY = fZ on all of M . Thus
A(fY )(p) = A(fZ)(p) which by linearity implies what we want.
Secondly, let Y = ρX. Now Y and X coincide on U and therefore X(p) = Y(p). Thus
A(Y )(p) = A(ρXi ∂

∂xi
)(p) = Xi(p)A(ρ ∂

∂xi
)(p) = 0 because ρ ∂

∂xi
is a global vector field

and hence linearity of A can be used.
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(b) It is a 1-form, i.e., ∈ T ∗
pM : ωp(aXp + bZp) = A(aX + bZ) = aA(X)(p) + bA(Z)(p) =

aωp(Xp) + bωp(Zp).

(c) It defines a smooth 1-form field as p varies : We just need to show that ωp(
∂
∂xi

(p)) is
smooth as a function of p for any coordinate chart (x, U). Indeed, take any ρ : U → R
which is smooth in a small neighbourhood of p and whose support is in U . Then
ωp(

∂
∂xi

(p)) = A(ρ ∂
∂xi

)(p) is a smooth function of p.
(2) If we are given a covariant tensor field of rank k, i.e., a smooth section A of T ∗M ⊗

T ∗M . . . T ∗M , then we can get a multilinear map Ā that takes smooth vector fieldsX1, . . . , Xk

to smooth functions. Indeed, Ā(X1, . . . , Xk)(p) = A(p)(X1(p), X2(p), . . .) where we are inter-
preting A(p) as a multilinear map on TpM . Actually, Ā is multilinear over smooth functions
as well (because it is defined pointwise).

(3) The converse to the above also holds :

Theorem 2.1. If A : V ect× V ect× . . .→ Func is linear over smooth functions, then there
is a unique smooth tensor field A with Ā = A.

Proof. It is the same proof as above but with multilinearity instead of linearity. �

(4) V ⊗W ' W ⊗ V : On every fibre, linearly extend the map vp ⊗ wp → wp ⊗ vp. This is
a fibrewise isomorphism. We just need to prove that it is smooth. Indeed, upon choosing
trivialisations ei, fµ for V,W , the map is (p,Aiµ)→ (p,Aiµ) which is smooth as a map from
U × Rv ⊗ Rw → U × Rw ⊗ Rv.

(5) (V ⊗W )∗ ' V ∗⊗W ∗ : Similar to the above isomorphism. Another way of looking at this is
through transition functions. I leave it as an exercise to show that for two invertible matrices
A,B, ((A⊗B)−1)T = (A−1)T ⊗ (B−1)T .

(6) Any smooth bundle map T : V → W induces a unique smooth section of W ⊗ V ∗ and
vice-versa : This will be given as HW.

(7) Contji : T kl M → T k−1
l−1 M is a bundle morphism : Indeed, fibrewise, applying the contraction

map defined earlier. It is smooth because at the level of a local trivialisation, it is simply a
linear map (summation of certain components of a multi-indexed object).

Lastly, given a smooth map f : M → N , we have the pushforward f∗ : TpM → Tf(p)N and the
pullback f∗ : T ∗

f(p)N → T ∗
pM . These induce linear maps f∗ : TpM ⊗ TpM ⊗ . . . → Tf(p)N ⊗ . . . as

f∗(v1 ⊗ v2 . . .) = f∗v1 ⊗ f∗v2 . . . and likewise for f∗. Just as in the usual case, covariant tensor fields
(things like 1-forms) can be pulled back but not contravariant ones (things like vector fields).

3. Differential forms

One important goal is to generalise the fundamental theorem of calculus to higher dimensions,
i.e., to write something like “Integral over a region R of some sort of derivative of some object A =
Integral over the boundary of R of some object that depends on A (but not on its derivative)”. For

example, Green’s theorem
∫ ∫

R
∂Q
∂x −

∂P
∂y dxdy =

∫
∂R(Pdx+Qdy). Likewise, we have the divergence

theorem
∫ ∫ ∫

R∇. ~FdV =
∫ ∫

∂R
~F . ~dA and the curl theorem

∫ ∫
R∇× ~F . ~dA =

∫
∂R

~F .~dl. Why do we
care about these generalisations ? one reason is that they help us study solutions of PDE (and also
to come up with solutions in the first place). For example, if you take ∆u = f on R ⊂ R3 with u = 0
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on ∂R, then multiplying by u and integrating we see that∫ ∫ ∫
R
u∆u =

∫ ∫ ∫
uf

⇒
∫ ∫ ∫

R
(∇.(u∇u)− |∇u|2) =

∫ ∫ ∫
uf

⇒
∫ ∫

∂R
u∇u. ~dA−

∫ ∫ ∫
|∇u|2 =

∫ ∫ ∫
uf

⇒ −
∫ ∫ ∫

|∇u|2 =

∫ ∫ ∫
uf(3.1)

So we know that the derivative of such a solution is in some sense controlled by the solution itself.
So, yes, it is useful to generalise the fundamental theorem of calculus (in the style of the Green

theorem) to higher dimensions. Obviously, the “region” in space should be replaced with a manifold-
with-boundary. The real questions are “What sort of objects should we integrate ?”, “What sort of
derivatives should we take ?”
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