
NOTES FOR 21 AUG (MONDAY)

1. Recap

(1) Proved a form of the Whitney embedding theorem for compact manifolds.
(2) Proved the existence of partitions of unity (both kinds).

2. Sard’s theorem

Recall that we noticed in our examples that the set of critical values of a smooth map f : M → N
seemed to be “small” (i.e. if you throw a dart at N, it is unlikely that you will hit at a critical value.
Moreover, regular values are dense). This is a general phenomenon called Sard’s theorem. To make
the notion of “small” precise, we need to know what “measure zero” means on a manifold. One
way is to define the concept of measure on N using a Riemannian metric (more precisely, using
the volume form of the same). But all we need to define is “measure zero”. This concept does not
need the full definition of a measure. Naively, “a set A ⊂ N is of measure 0 if we can cover it with
countably many measure 0 coordinate sets”. But to make sense of this definition, we need to know
how measure changes under diffeomorphisms (i.e. is this definition independent of the coordinates
chosen ?). To this end, we need a couple of lemmata :

Lemma 2.1. Let A ⊂ Rn be a rectangle and f : A→ Rn be a C1 function such that |Di f j
| ≤ K ∀ i, j. Then

| f (x) − f (y)| ≤ n2K|x − y|.

Proof.
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Lemma 2.2. If f : Rn
→ Rn is C1 and A ⊂ Rn has measure 0, then so does f (A) have measure 0.

Proof. Since Rn is a countable union of compact sets Ki, take A ∩ Ki. This has measure 0. We shall
prove that f (A ∩ Ki) has measure zero (thus proving the desired result).

By compactness, there exists a K such that lemma 2.1 applies. This means that if cover A with
countably many rectangles whose total measure is ε, then f (A) can be covered by rectangles whose
total measure is at most ε × (n2K)n. This proves the desired result. �

Now we define a subset A ⊂M of a smooth manifold to have measure 0 if A ⊂ ∪∞i=1Ui where Ui are
countably many coordinate charts such that each set xi(A ∩U) has measure 0. This notion is easily
seen by the above lemmata to be independent of the coordinates chosen.

Moreover, if A ∩U has measure 0 for every coordinate chart, and M is second countable, then A
has measure 0. (If M is the union of uncountable many Rs, then this is clearly false.)

As a corollary we have
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Corollary 2.3. If f : M→ N is a C1 map and A ⊂M has measure 0, then so does f (A).

Proof. A ⊂ ∪∞i=1Ui such that A ∩ Ui is of measure 0. Now for each chart (y,V) ⊂ N, f (A) ∩ V has
measure 0 by lemma 2.2. Since f (∪∞i=1Ui) is contained in at most countably many components of N,
f (A) has measure 0. �

Finally we have

Theorem 2.4 (Sard). If f : M → N is a Ck map, and M has countably many components, then the critical
values are a set of measure 0 if k ≥ 1 + max(m − n, 0).

The proof of this theorem is quite non-trivial. However, it is easily seen that (using coordinate
charts) it can be reduced to the case when M and N are Rm,Rn. The proof is in Milnor’s book. A
special case is easy to prove :

Lemma 2.5. If f : Mm
→ Nn is C1 and n > m then f (M) has measure 0 if M has only countably many

components.

Proof. Firstly, it is easy to see (why?) that we just need to prove this for Rm to Rn.
Secondly, coverRm with countably many closed cuboids Ri of size ε < 1 each. Let Ki be the constant
(which exists by compactness) necessary to apply lemma 2.1. Now | f (x) − f (y)| ≤ mnKi|x − y| by
the proof of that lemma. The measure of f (Ri) is at most (mnKi)nεn = Cεn. Let Rm = ∪iUi where
Ui = [−i, i]m. In order to cover Ui, one needs at most (2i)m

εm number of cuboids. Thus the measure
of f (Ui) is at most C̃εn−m. By choosing ε to be arbitrarily small, it is seen that f (Ui) has measure
0 f orall i. Thus f (M) has measure 0. �
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