
NOTES FOR 22 NOV (WEDNESDAY)

1. Recap

(1) Defined inner product, volume form, and the induced inner product on V ∗.
(2) Defined a metric on a vector bundle, proved that metrics exist, and as a corollary, V ' V ∗.

2. Riemannian geometry

In the special case when V = TM , the metric is called a Riemannian metric on M . If (x, U) is
a coordinate chart, then g(x) = gij(x)dxi ⊗ dxj . By symmetry, gij = gji. Moreover, g is a positive

definite matrix. If one changes coordinates to yµ then gµν = gij
∂xi

∂yµ
∂xj

∂yν . Given a metric g on TM ,

we get one on T ∗M given by g∗ = gij ∂
∂xi
⊗ ∂

∂xj
. Now gikg

kj = δji .

If M is oriented, supposing (x, U) is an oriented coordinate chart, then vol =
√

det(gij)dx
1 ∧

dx2 . . . dxm is a well-defined top form. Indeed, if we changes coordinates, it transforms correctly as
seen in the linear algebra above. This is called the “volume” form of the metric.

Here are examples :

(1) Euclidean space Rn, gEuc =
∑
dxi ⊗ dxi. This is the usual metric. The length of a tangent

vector v is
∑

(vi)2.
(2) If we take the same Euclidean space R2 and use polar coordinates, x = r cos(θ), y = r sin(θ),

then dx = dr cos(θ)−r sin(θ)dθ, dy = dr sin(θ)+r cos(θ)dθ. Thus, gEuc = dr⊗dr+r2dθ⊗dθ.
This automatically raises the question answered by Riemann “Suppose we write some metric
in Rn, how do we know that it is not just the Euclidean metric written in fancy coordinates
?”

(3) The circle S1 : g = dθ ⊗ dθ.
(4) If M, gM , N, gN are two Riemannian manifolds, then M×N, gM×gN given by gM×gN (vM⊕

vN , wM ⊕ wN ) = gM (vM , wM ) + gN (vN , wN ). This gives a metric on the n-torus using the
circle metric.

(5) The Hyperbolic metric Hm, gHyp : gHyp =
∑
dxi⊗dxi
(xm)2

.

The above examples still don’t tell us to how construct a metric on the sphere for instance. So we
introduce the following definition :

Definition 2.1. If g is a metric on M and S ⊂ M is an embedded submanifold, then g induces a
metric g|S on S given by gp|S(vS , wS) = gp(i∗vS , i∗wS).

In coordinates, suppose y1 = x1, . . . , ys = xs are coordinates on S and xs+1, . . . , xm are functions

of these on S, then g|S = gij
∂xi

∂yµ
∂xj

∂yν dy
µ ⊗ dyν . Now we can write down lots of examples.

(1) Sn ⊂ Rn+1. Suppose we choose the coordinate chart where xn+1 > 0, then xn+1 =√
1−

∑
(xi)2. Thus, gSphere =

∑
dxi ⊗ dxi +

∑
j x

jdxj√
1−

∑
(xi)2

⊗
∑
k x

kdxk√
1−

∑
(xi)2

. In the special case of

S2, this boils down to g = 1
1−(x1)2−(x2)2

[(1−(x2)2)dx1⊗dx1+(1−(x1)2)dx2⊗dx2+x1x2(dx1⊗
dx2 + dx2⊗ dx1)]. This is pretty complicated. A simpler way to write the metric is using an-
other coordinate chart, i.e., first write the metric in R3 in spherical coordinates z = r cos(θ),
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x = r sin(θ) cos(φ), y = r sin(θ) sin(φ). Thus, gEuc = dr⊗ dr+ r2dθ⊗ dθ+ r2 sin2(θ)dφ⊗ dφ.
Now when we restrict to the unit sphere, the tangent vectors do not include ∂

∂r . Thus,

gSphere = dθ ⊗ dθ + sin2(θ)dφ⊗ dφ
(2) Suppose z = f(x, y) is the graph of a function, then gInduced = dx⊗dx+dy⊗dy+ (∂f∂x )2dx⊗

dx+ (∂f∂y )2dy ⊗ dy + ∂f
∂x

∂f
∂y (dx⊗ dy + dy ⊗ dx).

(3) GL(n,R) ⊂ Rn2
has the Euclidean metric.

Now we write down the volume forms of most of the above examples :

(1) volEuc = dx1 ∧ dx2 ∧ . . . dxn.

(2) In polar coordinates in R2, volEuc =
√

det(g)dr ∧ dθ = rdr ∧ dθ.
(3) For the circle, vol = dθ.
(4) If we take the product metric on M × N , then vol = ±volM ∧ volN (depending on the

orientation chosen).
(5) volHyp = 1

(xm)mdx
1 ∧ dx2 . . . dxm.

(6) volSn = 1√
1−

∑
(xi)2

dx1 ∧ dx2 . . . dxn.

(7) volgraph =
√

det(g)dx∧dy =
√

(1 + (∂f∂x )2)(1 + (∂f∂y )2)− (∂f∂x
∂f
∂y )2dx∧dy =

√
1 + ∂f

∂x

2
+ ∂f

∂y

2
dx∧

dy
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