NOTES FOR 22 NOV (WEDNESDAY)

1. Recap

(1) Defined inner product, volume form, and the induced inner product on V^{*}.
(2) Defined a metric on a vector bundle, proved that metrics exist, and as a corollary, $V \simeq V^{*}$.

2. Riemannian geometry

In the special case when $V=T M$, the metric is called a Riemannian metric on M. If (x, U) is a coordinate chart, then $g(x)=g_{i j}(x) d x^{i} \otimes d x^{j}$. By symmetry, $g_{i j}=g_{j i}$. Moreover, g is a positive definite matrix. If one changes coordinates to y^{μ} then $g_{\mu \nu}=g_{i j} \frac{\partial x^{i}}{\partial y^{\mu}} \frac{\partial x^{j}}{\partial y^{\nu}}$. Given a metric g on $T M$, we get one on $T^{*} M$ given by $g^{*}=g^{i j} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}}$. Now $g_{i k} g^{k j}=\delta_{i}^{j}$.

If M is oriented, supposing (x, U) is an oriented coordinate chart, then vol $=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} \wedge$ $d x^{2} \ldots d x^{m}$ is a well-defined top form. Indeed, if we changes coordinates, it transforms correctly as seen in the linear algebra above. This is called the "volume" form of the metric.

Here are examples :
(1) Euclidean space $\mathbb{R}^{n}, g_{E u c}=\sum d x^{i} \otimes d x^{i}$. This is the usual metric. The length of a tangent vector v is $\sum\left(v^{i}\right)^{2}$.
(2) If we take the same Euclidean space \mathbb{R}^{2} and use polar coordinates, $x=r \cos (\theta), y=r \sin (\theta)$, then $d x=d r \cos (\theta)-r \sin (\theta) d \theta, d y=d r \sin (\theta)+r \cos (\theta) d \theta$. Thus, $g_{E u c}=d r \otimes d r+r^{2} d \theta \otimes d \theta$. This automatically raises the question answered by Riemann "Suppose we write some metric in \mathbb{R}^{n}, how do we know that it is not just the Euclidean metric written in fancy coordinates ?"
(3) The circle $S^{1}: g=d \theta \otimes d \theta$.
(4) If M, g_{M}, N, g_{N} are two Riemannian manifolds, then $M \times N, g_{M} \times g_{N}$ given by $g_{M} \times g_{N}\left(v_{M} \oplus\right.$ $\left.v_{N}, w_{M} \oplus w_{N}\right)=g_{M}\left(v_{M}, w_{M}\right)+g_{N}\left(v_{N}, w_{N}\right)$. This gives a metric on the n-torus using the circle metric.
(5) The Hyperbolic metric $\mathbb{H}^{m}, g_{H y p}: g_{H y p}=\frac{\sum d x^{i} \otimes d x^{i}}{\left(x^{m}\right)^{2}}$.

The above examples still don't tell us to how construct a metric on the sphere for instance. So we introduce the following definition :

Definition 2.1. If g is a metric on M and $S \subset M$ is an embedded submanifold, then g induces a metric $\left.g\right|_{S}$ on S given by $\left.g_{p}\right|_{S}\left(v_{S}, w_{S}\right)=g_{p}\left(i_{*} v_{S}, i_{*} w_{S}\right)$.

In coordinates, suppose $y^{1}=x^{1}, \ldots, y^{s}=x^{s}$ are coordinates on S and x^{s+1}, \ldots, x^{m} are functions of these on S, then $\left.g\right|_{S}=g_{i j} \frac{\partial x^{i}}{\partial y^{\mu}} \frac{\partial x^{j}}{\partial y^{\nu}} d y^{\mu} \otimes d y^{\nu}$. Now we can write down lots of examples.
(1) $S^{n} \subset \mathbb{R}^{n+1}$. Suppose we choose the coordinate chart where $x^{n+1}>0$, then $x^{n+1}=$ $\sqrt{1-\sum\left(x^{i}\right)^{2}}$. Thus, $g_{\text {Sphere }}=\sum d x^{i} \otimes d x^{i}+\frac{\sum_{j} x^{j} d x^{j}}{\sqrt{1-\sum\left(x^{i}\right)^{2}}} \otimes \frac{\sum_{k} x^{k} d x^{k}}{\sqrt{1-\sum\left(x^{i}\right)^{2}}}$. In the special case of S^{2}, this boils down to $g=\frac{1}{1-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}}\left[\left(1-\left(x^{2}\right)^{2}\right) d x^{1} \otimes d x^{1}+\left(1-\left(x^{1}\right)^{2}\right) d x^{2} \otimes d x^{2}+x^{1} x^{2}\left(d x^{1} \otimes\right.\right.$ $\left.\left.d x^{2}+d x^{2} \otimes d x^{1}\right)\right]$. This is pretty complicated. A simpler way to write the metric is using another coordinate chart, i.e., first write the metric in \mathbb{R}^{3} in spherical coordinates $z=r \cos (\theta)$,
$x=r \sin (\theta) \cos (\phi), y=r \sin (\theta) \sin (\phi)$. Thus, $g_{E u c}=d r \otimes d r+r^{2} d \theta \otimes d \theta+r^{2} \sin ^{2}(\theta) d \phi \otimes d \phi$. Now when we restrict to the unit sphere, the tangent vectors do not include $\frac{\partial}{\partial r}$. Thus, $g_{\text {Sphere }}=d \theta \otimes d \theta+\sin ^{2}(\theta) d \phi \otimes d \phi$
(2) Suppose $z=f(x, y)$ is the graph of a function, then $g_{\text {Induced }}=d x \otimes d x+d y \otimes d y+\left(\frac{\partial f}{\partial x}\right)^{2} d x \otimes$ $d x+\left(\frac{\partial f}{\partial y}\right)^{2} d y \otimes d y+\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}(d x \otimes d y+d y \otimes d x)$.
(3) $G L(n, \mathbb{R}) \subset \mathbb{R}^{n^{2}}$ has the Euclidean metric.

Now we write down the volume forms of most of the above examples :
(1) vol $_{\text {Euc }}=d x^{1} \wedge d x^{2} \wedge \ldots d x^{n}$.
(2) In polar coordinates in \mathbb{R}^{2}, vol ${ }_{E u c}=\sqrt{\operatorname{det}(g)} d r \wedge d \theta=r d r \wedge d \theta$.
(3) For the circle, vol $=d \theta$.
(4) If we take the product metric on $M \times N$, then $v o l= \pm$ vol $_{M} \wedge$ vol $_{N}$ (depending on the orientation chosen).
(5) vol $_{H y p}=\frac{1}{\left(x^{m}\right)^{m}} d x^{1} \wedge d x^{2} \ldots d x^{m}$.
(6) vol $_{S^{n}}=\frac{1}{\sqrt{1-\sum\left(x^{i}\right)^{2}}} d x^{1} \wedge d x^{2} \ldots d x^{n}$.
(7) vol graph $=\sqrt{\operatorname{det}(g)} d x \wedge d y=\sqrt{\left(1+\left(\frac{\partial f}{\partial x}\right)^{2}\right)\left(1+\left(\frac{\partial f}{\partial y}\right)^{2}\right)-\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right)^{2}} d x \wedge d y=\sqrt{1+\frac{\partial f}{\partial x}}{ }^{2}+\frac{\partial f^{2}}{\partial y} d x \wedge$ $d y$

