
NOTES FOR 23 AUG (WEDNESDAY)

1. Recap

(1) Covered Sard’s theorem. Defined measure zero.
(2) By the way, you can convince yourself that Sard’s theorem is not unreasonable by looking at

simple maps like (x, y)→ (ax + by, cx + dy) and (x, y)→ (x2, y2).

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Remember that we had a natural question when we defined the “partial derivatives” of a map
f : M→ R. This notion required the choice of a coordinate chart and hence there is no meaning to
d f : M → Rm. However, our question was “Is there some other manifold N such that d f : M → N
makes sense ?” Among other things, we shall answer that question here. (Spoiler : N will be denoted
(later) as T∗M and be called the cotangent bundle of M.) Why bother finding such a manifold N ? So
that we can apply all our machinery developed for manifolds (like the constant rank theorem and
Sard’s theorem for instance) to N.

Indeed, if we choose a coordinate chart (x,U), then d f : U → Rm is d f (p) = ( ∂ f
∂x1 (p), . . .). But if we

choose a different coordinate chart (y,V), then on U∩V, the two d f ’s are not the same. They change as
wi =

∂ f
∂yi =

∂ f
∂x j

∂x j

∂yi = v j
∂x j

∂yi in accordance with the chain rule. So one can attempt to construct a manifold

by taking the following weird quotient N =

∐
α Uα ×Rm

(~xα, ~vα) ∼ (~xβ, ~vβ) ⇔ Φ−1
α (~xα) = Φ−1

β (~xβ) and (vα)i =
∂x j
β

∂xi
α
(vβ) j

where Uα forms an atlas for M (where each Uα is homeomorphic to all ofRm). (Why is this a genuine
equivalence relation?)

Here is a sketch of the proof that N is indeed a smooth manifold of dimension 2n and d f : M→ N
is a well-defined smooth map : Let π :

∐
α Uα × Rm

→ N be the quotient map. N is Hausdorff,
paracompact, and π is an open map (Why?). Consider the open cover of N formed by the open sets
Ũα = π(Uα ×Rm). Now here are coordinate charts Φ̃α : Ũα → R2m given by Φ̃α(π(xα, vα)) = (xα, vα).

(Why are these homeomorphisms ?) The transition functions are Φ̃α ◦ Φ̃−1
β (xβ, vβ) = (xα,

∂x j
β

∂xi
α
(vβ) j)

which are diffeomorphisms (Why? Hint : Note that the second factor is simply an invertible linear
map (varying smoothly) that takes vβ to vα). So N is hausdorff, paracompact, and locally euclidean
(with the transition functions being smooth). Thus it is a smooth manifold with the smooth structure
being induced by the unique maximal atlas containing the one that we provided. Moreover, define
d f : M→ N as follows : Suppose p ∈ Uα, then d f (p) = π(xα(p), ∂ f

∂x1
α
(p), . . .). It is easy to check that this

is well-defined and smooth.
Note that N has the following properties :

(1) N is a smooth manifold of dimension 2m (we will denote it as T∗M from now onwards).
(2) There is a smooth map (which by an unfortunate choice of notation we will denote as π, but

please do not confuse this with the previously denoted quotient map used to construct N)
π : N = T∗M→M such that π−1(p) is a real vector space of dimension m.
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(3) π satisfies the “local triviality” condition : Around every point p ∈ M, there is an open
neighbourhood Vp and a diffeomorphism φ : π−1(Vp)→ Vp ×Rm such that π1 ◦φ = π and φ
is a linear map on the second factor.

(4) The map d f : M→ T∗M satisfies π ◦ d f (p) = p.
We will see objects like N having these properties appear over and over again in the study of
manifolds (and for that matter, algebraic geometry, and even physics). So it is best to “abstract out”
these properties into a definition once and for all :

Definition 2.1. A rank-r smooth real vector bundle over a smooth manifold M is a tuple (E, π,M,⊕,�)
where

(1) E is a smooth manifold of dimension m + r. It is called “the total space of the bundle”. M is
called “the base space of the bundle”.

(2) π : E→M is a smooth onto M.
(3) ⊕ and � are maps ⊕ : ∪p∈Mπ

−1(p) × π−1(p) → E and � : R × E →⊂ π−1(p)E such that
⊕(π−1(p) × π−1(p)) ⊂ π−1(p) and �(R × π−1(p)) ⊂ π−1(p) make each “fibre” π−1(p) into an
r-dimensional vector space over R.

such that the “local triviality” condition is satisfied : For each p ∈M there is an open neighbourhood
Vp and a diffeomorphism φ : π−1(U) → Vp × Rr such that π1 ◦ φ = π and π is a vector space
isomorphism from each π−1(q) onto q ×Rr for all q ∈ U.

By abuse of notation, whenever we say “vector bundle”, we will denote it as E (and forget about
the tuple).

The map d f : M→ T∗M has a special property which will make into a definition :

Definition 2.2. Suppose E is a vector bundle over M. A smooth map s : M→ E is called a section if
π ◦ s(p) = p.

It is clear that every vector bundle has a “stupid section”, namely the zero section s0 which is
defined by requiring s0(p) to be 0 in the vector space π−1(p) lying above p, i.e., for every local trivi-
alisation φ, φ ◦ s0(p) = (p,~0). I leave it as an exercise to check that M is embedded in V through the
zero section s0.

Note that if U is a coordinate open set, then dxi : U ⊂ M → T∗M are local smooth sections, i.e.,
smooth maps such that φ ◦ dxi(p) = p. Note that dxi(p) = [p, ∂xi

∂x1 , . . .] = [p, 0, . . . , 1, 0, . . .]. Moreover,
notice that smooth sections form a vector space. Indeed, given two sections s1, s2, we define their
addition (s1 + s2)(p) = [p, π2 ◦ s1(p) +π2 ◦ s2(p)] and likewise, scalar multiplication. The dxi(p) form a
basis for the fibre π−1(p) for all p ∈ U (indeed, in the xi coordinates, they correspond to the standard
basis ofRm). Also, it is easy to see that every smooth section ω : M→ T∗M is locally, on a coordinate
open set U, of the formω(p) = [p, ωi(p)dxi(p)] whereωi : U→ R are smooth functions. Under change

of coordinates, they transform as ωi,α =
∂x j
β

∂xi
α
ω j,β. Sections of T∗M are called “1-forms”.


	1. Recap
	2. Vector fields, Tangent bundle, Cotangent bundle, etc

