
NOTES FOR 23 OCT (MONDAY)

1. Recap

(1) Wrote down the linear algebra properties of tensor products in the index notation.
(2) Generalised some properties to vector bundles. In particular, proved that given a multilinear

function that takes vector fields to functions, we get a unique 1-form field.
(3) Motivated the question of generalising the fundamental theorem of calculus to higher dimen-

sions, i.e., versions of the Green, divergence, and curl theorems.

2. Differential forms

Looking at the above examples, it seems that the notion of a cross product plays an important

role. Indeed, ~dA and ∇× ~F involve cross products. Naively, if we want to extend cross products of

vectors to R4, then the components of ~a ×~b will be aibj − ajbi where 1 ≤ i, j ≤ 4. In other words,

there are more than 4 independent components! So whatever ~a ×~b is, it is definitely not a vector
in R4 ! Perhaps the correct way to talk about cross products is determinants. Maybe it only makes
sense to talk about

~a“× ”~b“× ”~c =

∣∣∣∣∣∣∣∣
i j k l
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣(2.1)

So “∇× ~F” should be replaced with ( ∂
∂x i + ∂

∂y j + ∂
∂zk + ∂

∂w l)“ × ”F where F is no longer a vector

but an object involving 2-indices.
All of these considerations motivate us to study “differential forms”, i.e., tensors that are anti-

symmetric/alternating. An alternating tensor T ∈ T k(V ∗) corresponds to a multilinear map such
that T (v1, . . . , vk) = 0 whenever vi = vj for some i 6= j. It is easy to see (using vi + vj in the
places of vi, vj) that this is equivalent to being anti-symmetric, i.e. T (v1, v2, . . . , vi, . . . , vj , . . .) =
−T (v1, . . . , vj , . . . , vi, . . .). (This is only for fields of characteristic 6= 2.) We denote alternating

tensors as Ωk ⊂ T k. Note that Ω0 = R and Ω1 = T 1. Note that if S : V →W is a linear map, then
S∗ : W ∗ → V ∗ induces a map S∗ : T k(W ∗) → T k(V ∗). It is easy to see that this preserves Ωk and
hence induces a map between the alternating tensors. The simplest example of an alternating tensor
is the determinant. Here are two useful little points :

(1) dim(Ωk(V ∗)) = 0 if k > dim(V ) : Indeed, evaluate this on a basis of V ⊗ V ⊗ . . .. For each
of the basis vectors, at least one of the ei repeats.

(2) dim(Ωdim(V )(V ∗)) = 1 : ω(v1, v2, . . . , vn) = vi11 v
i2
2 . . . v

in
n ω(ei1 , . . . , ein). If the indices repeat,

then ω(v1, . . . , vn) = 0. If not, note that any permutation of e1, . . . , en can be accomplished
by a sequence of transpositions. Hence ω(ei1 , . . .) is upto a sign, the same as ω(e1, . . . , en).
Thus, every ω is a multiple of the determinant map.

Actually, it is not that hard to construct examples of alternating tensors. As an analogy (which is
more than an analogy as we will see), suppose I give you an n × n matrix Aij . Is there a natural

way to construct an anti-symmetric matrix from it ? Sure, take
Aij−Aji

2 , i.e., “antisymmetrize” the
1
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indices. More generally, one does the following :
Let σ be a permutation of 1, . . . , k, i.e., it is a function i → σ(i). If (v1, . . . , vk) is a tuple of any
objects, we define σ.(v1, . . . , vk) = (w1, . . . , wk) = (vσ(1), . . . , vσ(k)). This is sort of like a group action
in the sense that σ.(ρ.(v1, . . . , vk)) = (ρσ).(v1, . . . , vk). Now we define the antisymmetrization or the
alternation of a tensor T ∈ T k as

AltT =
1

k!

∑
σ∈Sk

sign(σ)T.σ(2.2)

i.e., AltT (v1, . . . , vk) = 1
k!

∑
σ∈Sk

sign(σ)T (vσ(1), vσ(2), . . .).

Here is a proposition :

Proposition 2.1. (1) If T ∈ T k, then Alt(T ) ∈ Ωk

(2) If ω ∈ Ωk then Alt(ω) = ω (We need the 1
k! for this property)

(3) If T ∈ T k then Alt(Alt(T )) = Alt(T ).

Proof. (1) We need to prove that if we interchange (transpose) two vectors, then Alt(T ) acting
on the new set picks up a negative sign. Indeed, AltT ◦ tran = 1

k!

∑
sgn(σ).T ◦ σ ◦ tran =

1
k!sgn(tran)

∑
sgn(σ̃).T ◦ σ̃ = −AltT .

(2) Altω = 1
k!

∑
sgn(σ)ω ◦ σ = 1

k!

∑
sgn2(σ)ω = ω.

(3) Follows the previous one.
�

Now we define the “cross” product, i.e., the wedge product ∧ of two alternating tensors ω ∧ η :

ω ∧ η = (k+l)!
k!l! Alt(ω ⊗ η). It satisfies the following properties

(1) ∧ is bilinear
(2) If T : V →W , then T ∗(ω ∧ η) = T ∗ω ∧ T ∗η.
(3) ω ∧ η = (−1)klη ∧ ω. So if ω is an odd alternating tensor (i.e. of odd rank), then ω ∧ ω = 0.

On the other hand, this is not necessarily true for even tensors.

Actually, the wedge product (just like the cross product) is also associative, but that requires a little
bit of effort to prove.

Theorem 2.2. The following hold.

(1) If S ∈ T k, T ∈ T l, and Alt(S) = 0, then Alt(S ⊗ T ) = Alt(T ⊗ S) = 0.
(2) Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗Alt(η ⊗ θ)).
(3) (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) = (k+l+m)!

k!l!m! Alt(ω ⊗ η ⊗ η).

Proof. Indeed,

(1)

Alt(S ⊗ T )(v1, . . . , vk+l) =
1

(k + l)!

∑
σ

sgn(σ)S ⊗ T (vσ(1), . . . , vσ(k+l))

=
1

(k + l)!

∑
σ

sgn(σ)S(vσ(1), . . . , vσ(k))⊗ T (vσ(k+1), . . . , vσ(k+l))(2.3)
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Any permutation that fixes the last l vectors obviously goes to 0. Call the subgroup of such
permutations G. Consider the left cosets σ0G. Then

1

(k + l)!

∑
σ′∈G

sgn(σ0σ
′
)S ⊗ Tσ′

.(v(σ0(1)), . . . , vσ0(k), vσ0(k+1), . . . , vσ0(k+l)) = 0(2.4)

Since summation over the group can be broken up into summation over left cosets, we are
done. Likewise, Alt(T ⊗ S) = 0.

(2) Note that Alt(Alt(ω⊗η)−ω⊗η) = 0. Therefore, Alt((Alt(ω⊗η)−ω⊗η)⊗θ) = 0. Likewise
for the other equality.

(3) Note that

(ω ∧ η) ∧ θ =
(k + l +m)!

(k + l)!m!
Alt((ω ∧ η)⊗ θ)

=
(k + l +m)!

(k + l)!m!

(k + l)!

k!l!
Alt(Alt(ω ⊗ η)⊗ θ)

By the previous part, we are done.

�

If φ1, φ2, φ3, φ4 is a basis of a four dimensional dual vector space V ∗, then ω = φ1 ∧ φ2 + φ3 ∧ φ4
is an alternating 2-tensor. Now ω ∧ ω = 2φ1 ∧ φ2 ∧ φ3 ∧ φ4 6= 0. Indeed note that φ1 ∧ φ2 ∧ φ3 ∧
φ4(e1, e2, e3, e4) = 1 - We need the weird factor in the definition of the wedge product for precisely
this equality. More generally, if φ1, . . . , φk is a basis, then φ1∧ . . . φk(e1, . . . , ek) = 1. This alternating
tensor is nothing but the determinant map.
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