
NOTES FOR 25 OCT (WEDNESDAY)

1. Recap

(1) Agreed that it is important to generalise the cross product to higher dimensions. Saw that
antisymmetric matrices/more general objects appear.

(2) Defined alternating/skew-symmetric tensors. Constructed them using the usual tensors by
the alternation map (with a weird factor to make sure that Alt(ω) = ω).

(3) Defined the wedge product (with a weird factor for associativity) and proved its properties.
Most notably, associativity.

(4) Saw that ω ∧ ω = 0 if ω is of odd rank but not necessarily so if ω is of even rank. Also saw
that (e1)∗ ∧ . . . (en)∗ 6= 0 and that it corresponds to the determinant tensor.

2. Differential forms

More generally, suppose (e1)∗, . . . , (en)∗ form a basis for V ∗, then ω = (e1)∗∧(e2)∗ . . . (ek)∗ 6= 0 for

any k. Indeed, ω = (1+1...+1)!
1!...1! Alt((e1)∗⊗. . .). Therefore ω(e1, . . . , ek) = 1. Moreover, ω(ei1 , . . . , eik) =

0 if I 6= {1, 2, . . . , k}. In fact, we have :

Theorem 2.1. Suppose (eI)∗ = (e1)∗, . . . , (en)∗ form a basis for V ∗, then the set of all (ei1)∗ ∧
(ei2)∗ . . . ∧ (eik)∗ where 1 ≤ i1 < i2 < . . . < ik form a basis for Ωk. Therefore, dim(Ωk) = n!

(n−k)!k! .

Proof. The argument above shows that (eI)∗ 6= 0. Suppose they are linearly dependent, i.e., there
exist aI (not all 0) such that ω = aI(e

I)∗ = 0. Then ω(eJ) = aI(e
I)∗(eJ) = aIδ

I
J = aJ = 0. A

contradiction.
Now we prove that they span Ωk. Indeed, suppose ω ∈ Ωk. Then define aI = ω(eI) (where I is
increasing). I claim that η = ω − aI(eI)∗ = 0. Indeed, since it is enough to test on all basis vectors
of the form eI = (ei1 , ei2 , . . .) where I is increasing (because if we arrange in any other order, we
simply pick up a sign), we see that η(eI) = aI − aI = 0.
Alternatively, ω = aI(e

I)∗ where (eI)∗ = ei1 ⊗ ei2 . . .. Since ω = Alt(ω) we see the result. �

and

Corollary 2.2. If ω1, . . . , ωk ∈ Ωk then they are linearly independent if and only if ω1∧ω2 . . . ωk 6= 0.

Proof. If ωi are linearly independent, then we can extend them to a basis of V ∗ and use the previous
result to conclude that ω1 ∧ ω2 . . . ωk 6= 0.
If they are dependent, i.e., ω1 =

∑n
i=2 aiωi, then (

∑
aiωi) ∧ ω2 . . . = a2ω2 ∧ ω2 . . .+ a3ω2 ∧ ω3 . . . =

0. �

Note that the above theorem implies that, given any ω ∈ Ωk, it is a linear combination of
(v1, . . . , vk) → determinant of a (k × k) minor. Before going on to manifolds, we prove one more
result.

Theorem 2.3. Suppose v1, . . . , vn is a basis for V and ω ∈ Ωn. Let wi = αjivj. Then ω(w1, . . . , wn) =

det(αji )ω(v1, . . . , vn).
1
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Proof.

ω(w1, . . . , wn) = ω(αj11 vj1 , α
j2
2 vj2 , . . .) = αj11 α

j2
2 . . . ω(vj1 , . . .)

= αj11 α
j2
2 . . . sgn(σj)ω(v1, . . . , vk),(2.1)

where σj(i) = ji. Therefore the theorem holds.
Alternatively, define η((a11, . . . , an1), (a21 . . .), . . .) = ω(w1, w2, . . .) = cdet where c = ω(v1, . . . , vn).

�

3. A digression - Orientation

In our study of the Möbius strip (in the HW) we found that it is not trivial and that is because of
the intermediate value theorem. The real problem is that the Möbius strip has no outside or inside
(if it did, it would have to be trivial). Moreover, even in the Green, div, and curl theorems, one
needs to have a notion of an “outward pointing” normal. So, we need to make sense of the concept
of “orientation”.

Suppose V is a f.d. vector space. An orientated basis is simply an ordered basis e1, . . . , en. Two

orientated bases are said to “agree” if the change of basis ẽi = ajiej satisfies det(aji ) > 0. This
defines an equivalence relation among orientated bases with exactly two equivalence classes called
“orientations”. An orientation preserving linear isomorphism T : (V, µ = [e1, . . . , ev]) → (W, ν =
[f1, . . . , fv]) satisfies [f1, f2, . . .] = [T (e1), T (e2), . . .].

On Rn, there is a “standard” orientation given by the standard basis. Note that in R3, the
right-hand thumb rule gives orientations. Here are a couple of examples :

(1) ~x→ −~x. This is orientation preserving on R2n but not on R2n+1.
(2) ~x→ (x2, x1, x3, . . .). This is always orientation reversing.

we have the following useful lemma that follows from earlier theory easily.

Lemma 3.1. If V is an n-dimensional vector space, and 0 6= ω ∈ Ωn, then there is a unique
orientation µ on V such that [v1, . . . , vn] = µ if and only if ω(v1, . . . , vn) > 0. Moreover, every
orientation arises this way.

In other words, specifying an orientation on a vector space is the same as specifying a non-zero
“top” order alternating tensor.

Suppose V is a smooth vector bundle over M . We want to make sense of when the vector bundle is
orientable and give an orientation. Naively, we want to say that an orientation is simply a collection of
orientations µp, one for each point p ∈M . But somehow these orientations should “vary” smoothly.
To make sense of this, consider a trivial bundle U × Rr where U ⊂ M is a connected open subset.
Give every fibre the standard Rr orientation. Suppose T : U × Rr → U × Rr is a smooth bundle
isomorphism, then T is either orientation-preserving or orientation-reversing on all fibres because

Tx(ei) = aji (x)ej where det(aji )(x) 6= 0 ∀ x ∈ U . Therefore the following definition makes sense.

Definition 3.2. A vector bundle V over a manifold M is said to be orientable if there is a choice
of µp ∀ p ∈ M such that every trivialisation ΦU : π−1(U) ' U × Rr over a connected open set U
satisfies the following property : ΦU (p) either preserves µp for all p ∈ U or reverses µp for all p ∈ U
(where Rn is equipped with the standard orientation). A given choice of such a smoothly varying
µp ∀ p ∈M is called an orientation.

Note that if one trivialisation t satisfies this property for U , then all trivialisations t
′

: π−1(U) '
U × Rr satisfy this property.
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Definition 3.3. If (V, µ), (W, ν) are oriented vector bundles over M , then a smooth bundle iso-
morphism T : V → W is said to preserve the orientations if T (µp) = νp ∀ p ∈ M . So we have an
equivalence relation among the orientations on an oriented vector bundle. It is easy to see that there
are only two equivalence classes.

As a consequence, suppose we cover M with trivialising open sets Uα. Assume that V is orientable,
with a given choice of an orientation. Then after composing with one of the example maps described
above, we can assume that ΦU (p) preserves µp for all p ∈ U . Therefore gαβ = Φα ◦Φ−1

β has positive

determinant for all α, β. Conversely, if the transition functions satisfy this property, then it is easy
to see that the standard orientation induced from Rr defines an orientation on V . So an oriented
vector bundle can be alternatively defined as
Alternative equivalent definition of orientability : A (real) vector bundle whose transition functions
gαβ : Uα ∩ Uβ → GL(r,R) can be chosen to have positive determinant, i.e., for all α, β, p ∈ Uα ∩ Uβ,
gαβ(p) ∈ GL+ is said to be orientable.
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