
NOTES FOR 15 SEPT (FRIDAY)

1. Recap

(1) Motivated the study of continuous symmetries from the perspective of differential equations.
(2) Defined Lie groups and Lie group homomorphisms. Proved that an embedded submanifold

of a Lie group that is closed under multiplication and inversion is a Lie group in its own
right.

(3) Gave examples (Abelian and Matrix examples).

2. Lie groups and Lie algebras

(1) We proved the symplectic group Sp(2n,R) consisting of 2n × 2n invertible matrices A such
that AT JA = J is a Lie group.
Just as the orthogonal group consists of matrices that preserve a metric, Sp(2n) preserves
a so-called symplectic form, i.e., a non-degenerate bilinear form ω : V × V → R satisfying
ω(X,Y) = −ω(Y,X). Every such form can be written (using an appropriate basis) to J. Indeed,
we induct on n. For n = 2, take any e1 and define e2 as any linearly independent vector
such that ω(e1, e2) = 1. Suppose this has been done for n = k, then for n = k + 1, take
e1, e2 such that ω(e1, e2) = 1. Consider the 2k-dimensional subspace S consisting of v such
that ω(v, e1) = ω(v, e2) = 0. (This is 2k-dimensional by non-degeneracy of ω.) Use the
induction hypothesis. (Indeed, this proof shows that symplectic forms can exist only in even
dimensions.) The point of studying symplectic forms is to generalised classical mechanics
as formulated by Hamilton.

(2) SU(n) and SO(n) are also a Lie groups. Indeed, SO(n) is a connected component of O(n). As for
SU(n), consider the smooth map det : U(n)→ S1. We shall prove that 1 is a regular value, i.e.,
given any real number r, there is a curve of unitary matrices U(t) passing through a given ma-
trix U0 such that d det(U(t))

dt |t=0 =
√
−1r. Indeed, U0 = P†DP where D = diag(e

√
−1a1 , e

√
−1a2 , . . .).

So define U(t) = P†D(t)P where D(t) is chosen so that tr(D
′

D−1) =
det(U(t))

dt |t=0 =
√
−1r.

Another beautiful fact is that SU(2) ≡ S3. Indeed, SU(2) consists of matrices of the form[
a b
−b̄ ā

]
where |a|2 + |b|2 = 1. The smooth map (a, b) ∈ S3

⊂ R4
→ SU(2) is a diffeomorphism.

(Why ?)
The notion of a Lie subgroup is somewhat subtle. Naively one would think that a Lie subgroup is a
subgroup which is also a submanifold. Unfortunately, that expectation is not quite correct because
it can be an immersed submanifold (as opposed to an embedded one). Indeed, the immersion
f : R→ R2/Z2 given by f (t) = (t, ct) where c < Q is an immersed but not an embedded submanifold
because its image is dense. That being said, an embedded submanifold H which is also a subgroup
is a Lie group in its own right because the map (x, y) → xy−1 is smooth when considered as a map
into G.

So a Lie subgroup H is defined to be a subgroup H ⊂ G such that H is a Lie group for some
topology and C∞ structure, and the inclusion map is a 1− 1 immersion. It is a very non-trivial result
that closed Lie subgroups are actually embedded submanifolds. (Cartan’s theorem.)
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Note that SO(n) is a connected component of O(n) containing the identity. This can be generalised
to

Theorem 2.1. If G is a Lie group, then the component K containing the identity id ∈ G is a closed normal
Lie subgroup.

Proof. Components are closed and hence K is so. The map (x, y) → xy−1 is continuous and hence
sends K × K to a connected set containing id and hence to K. Thus K is a subgroup. Consider the
continuous maps a → bab−1 from K to G (for every b ∈ G). Once again the image contains id and
hence is contained in K for every b ∈ G. Thus K is normal. Since components are open, K is also an
embedded submanifold. Thus K is a closed normal Lie subgroup. �

As a final example, let us consider the group of isometries E(n) of Rn, i.e., diffeomorphisms that
preserve distances. It turns out that every such isometry is an affine map : ~x → A(~x + ~a) = A ◦ τa
where τa is a translation and A ∈ O(n). As a manifold E(n) can be given the smooth structure of
O(n) ×Rn (at least a set it is bijective to the latter). It is also a Lie group because A ◦ τa ◦ B ◦ τb(x) =
Aτa(Bx + Bb) = A(Bx + Bb + a) = ABx + ABb + Aa (and AB ∈ O(n)) and τ−1

a ◦ A−1(x) = A−1x − a (and
A−1
∈ O(n)).

However, as a Lie group, it is not a direct product. Indeed, AτaA−1(x) = A(A−1x + a) = x + Aa , x + a.
It turns out that it is a semidirect product. It is easy to see that the component of identity is simply
the above with SO(n) matrices.

There are two maps (left and right translations) on a Lie group. La(b) = ab and Ra(b) = ba.
Since they are smooth and have smooth inverses La−1 ,Ra−1 we see that they are diffeomorphisms.
Therefore it makes sense to pushforward vector fields. (Recall that if φ is a diffeomorphism,
(φ∗X)(p) = φ∗(X(φ−1(p))).)

A vector field X is said to be left invariant (resp. right invariant) if La∗X = X ∀ a ∈ G (resp.
Ra∗X = X ∀ a ∈ G). Suppose Xa ∈ TaG is the value of X at a, then for a left-invariant vector field,
La∗Xb = Xab ∀ a ∈ G which means that in particular, La∗Xe = Xa ∀ a ∈ G. Moreover, this is equivalent
to left-invariance. (Why?) Therefore, given an element Xe ∈ TGe we can produce a unique left-
invariant vector field X such that X(e) = Xe (and all left-invariant vector fields arise this way). But
it is not obvious yet that all left-invariant vector fields are smooth.

Proposition 2.2. Every left-invariant vector field (simply a left-invariant section of TG) is smooth.

Proof. By the above discussion, X(a) = La∗Xe. Suppose (x,U) is a coordinate system near e. Then
y = La(x),La(U) is a coordinate system near a (because La is a diffeomorphism). Now suppose

b ∈ La(U). Then X(b) = Lb∗Xe in coordinates is (y1, . . . , ym) →
∂yi
◦Lb(y)

∂x j X j
e
∂
∂yi which is smooth in y

because multiplication is smooth. �

An easy corollary is that every Lie group is parallelizable, i.e., it has trivial tangent bundle.
(Just take a basis for TeG and construct left-invariant vector fields.) Therefore S3 is parallelizable.
Moreover, S2 is therefore not a Lie group. Actually it turns out that other than S1 and S3 no odd
sphere is a Lie group.
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